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Abstract

A novel method of combined use of magnetic vector potential (MVP) based

finite element (FE) formulations and magnetic scalar potential (MSP) based FE for-

mulations for computation of three-dimensional (3D) magnetostatic fields is developed

in this dissertation. This combined MVP-MSP 3D-FE method leads to considerable

reduction by nearly a factor of 3 in the number of unknowns in comparison to the num-

ber of unknowns which must be computed in global MVP based FE solutions. This

method allows one to incorporate portions of iron cores sandwiched in between coils

(conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of

current carrying regions (in comparison with the exclusive MSP based methods) in

electric machinery applications. A unique feature of this approach is that the global

MSP solution is single valued in nature, that is, no branch cut is needed. This is again

a superiority over the exclusive MSP based methods. A Newton-Raphson procedure

with a novel concept of an adaptive relaxation factor was developed and successfullv

used in solving the 3D-FE problem with magnetic material anisotropy and nonlinear-

itv. Accordingly, this combined MVP-*ISP 3D-FE method is most suited for solution

of large scale global type magnetic field computations in rotating electric machinery

with very complex magnetic circuit geometries, as well as nonlinear and anisotropic

material properties.

The combined MVP-MSP 3D-FE solution method, in conjunction with the

state-space equations using the natural abc-frame of reference, forms a complete com-

puter aided model to analyze and predict machine parameters and performances. This

modeling tool was applied to 3D magnetic field analysis and machine performance

computations of an example 14.3 kVA modified Lundell alternator. The energy per-

turbation approach was used in this investigation to compute machine winding induc-

tances from 3D-FE computed magnetic field results. The effects of magnetic material

nonlinearity and the space harmonics due to complex magnetic circuit geometries were

fully included in the results of machine winding inductances. Results of computed

open-circuit, short-circuit, as well as rated load and over-rated load conditions were

found to be in excellent agreement with corresponding test values. In this research,

the electromagnetic torque profiles including their ripples (harmonics) were computed

in terms of terminal voltage and current profiles as well as stored magnetic energies.

In addition, results of use of this modeling and computation method in a design alter-
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ation, in which the stator stack length of the example alternator is stretched in order

to increase voltage and volt-ampere rating, were studied in this investigation. These

results demonstrate the inadequacy of some conventional 2D-based design concepts

and the imperative of this type of 3D magnetic field modeling in analysis of such MLA

class of machines. This includes almost all machines of the axial flux flow variety.

The modeling technique and algorithm developed in this research can serve as an

excellent design tool and means of gaining insight into the workings of such machines

with truly 3D magnetic field patterns and complex magnetic circuit geometries. The

generic nature of this modeling allows one to use it in design optimization and design

synthesis studies.
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Chapter 1

Introduction

1.1 Background of the Problem

It is a well established fact in the body of knowledge on the design of ac electric

machinery that the higher the operating speed (frequency) of a given machine the

lesser its weight and volume, for a given voltampere rating and a particular set of

construction materials. The demand for generators with extra high voltampere to

weight and/or volume ratios is most critical in aerospace applications. One of these

possible applications is in the anticipated thermal portion of the electric power gener-

ation on board NASA's projected Space Station Freedom, namely the solar dynamic

(SD) power module [1].

A prime candidate as an extra high speed (> 30,000 r/min) electric generator,

for this SD module is the class of modified Lundell alternators (MLA) [2, 3], in which

the lack of any rotating windings permits such extra high rated speeds. The main

constructional feature of a particular 4-pole gILA is shown in the isometric cut-away

cross-section of Figure (1.1.1). The longitudinal cross-section of an example 14.3 kVA,

4-pole, 36,000 r/min high speed MLA [3], as well as its 4-pole rotor's isometric of the

magnetic portion are shown in Figures (1.1.2-a) and (1.1.2-b). This is in addition to

a rotor photograph of Figure (1.1.3), of this example 14.3 kVA MLA.

In such MLAs, Figures (1.1.1) and (1.1.2), both the armature and field excitation

windings are stationary. The armature winding is usually a conventional three-phase,

double-layered winding housed in a conventional slotted and laminated armature

core, the longitudinal cross-sections of which can be clearly seen in Figure (1.1.2-

a). Meanwhile, the stationary field winding consists of two toroidal coils, which are
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located on both ends of the machine, surrounding the shaft as shown in Figure (1.1.1).

The two toroidal field coils are much like two Tesla coils located at both ends of the

rotor shaft.

The bimetallic rotor consists of two magnetic metal pieces which are brazed to a

nonmagnetic metal piece filling the space in between. The two magnetic pieces form

a shape which is very similar to that of a "universal joint" as shown in the isometric

diagram of Figure (1.1.2-b). Hence one obtains the 4-pole structure of the example

14.3 kVA MLA. The field coils establish an axial magnetic flux in the rotor shaft

which cannot flow axially from one magnetic portion of the rotor to the next due

to the nonmagnetic metallic piece brazed to both magnetic pieces of the bimetallic

rotor, Figure (1.1.2). Thus the magnetic flux in the shaft is forced to split into two

equal portions, each flowing radially outward through the surfaces of the two (north)

pole pieces of the rotor across the main airgap, Figure (1.1.2), and into the armature

teeth and core, Figure (1.1.2-a). This flux flows circumferentially through the back of

the unslotted portion of the laminated iron core to return radially inward through the

armature teeth and across the main airgap, and into the two (south) pole pieces of the

other magnetic portion of the rotor. See the flux flow arrows in Figure (1.1.2). This

flux continues to flow axially through the rotor until it crosses one of the two auxiliary

airgaps between the shaft surface and the end-bells. Flux flows axially from one end

bell to the other through an outer magnetic casing in the form of a cylindrical shell,

which forms, together with the end bells, an integral part of the return flux path from

one end of the machine to the other across the two auxiliary airgaps. The rotation of

the magnetic fields in this class of machines is caused by the rotation of the "universal

joint like" magnetic portion of the bimetallic rotor structure, Figure (1.1.2-b), and

not by the rotation of the field windings as in conventional synchronous machines

with rotor mounted excitation.

It is obvious that the magnetic flux path and its corresponding spatial flux dis-

tribution in this class of MLAs are truly three dimensional (3D) in their nature. That

is, the magnetic flux distributions are of simultaneously axial, radial and circumfer-

ential orientations, and are at variance with the usual, largely two dimensional (2D),

flux patterns encountered in conventional electric machinery. The intrinsically 3D

nature of the magnetic field distribution in such MLAs immensely complicates the

design, performance computation and prediction processes. The concepts of perfor-

mance computation which are based on 2D fields and axial symmetry, such as the



computation of voltages in straight armature conductors using the welt known for-

mula l(Y x -B)= IvB, or the flux linkage concept (4.44fCNk_), or the proportionality

of the voltampere rating to volume, VA cx D2L, would not apply for such MLAs.

Accordingly, one needs powerful computer modeling and computation methods to be

able to thoroughly study the nature of the MLA's 3D magnetic field distributions.

Meanwhile, new approaches of computation of machine parameters, induced voltages

in windings, etc., which are based on the fact that the field is 3D in nature, have to

be developed.

Therefore, this dissertation is directed towards the study and development of

large scale nonlinear magnetic field three-dimensional finite element (3D-FE) com-

putation methods, as well as machine performance simulation models, for rotating

electric machinery with truly 3D magnetic field distributions such as these MLAs at

hand. At this stage, a literature review of published work in the area of 3D magnetic

field analysis and computation methods is most appropriate. This literature review

also includes the review of publications of magnetic field computations on design and

performance simulation of ac rotating electric machines.

1.2 Literature Search

Within the last two decades, many numerical modeling approaches for computation

of magnetic fields have been developed by investigators and researchers. The fast

advances of modern computer technologies made it possible for many numerical com-

putation methods to be used in solving practical engineering problems. Publications

on the subject of numerical computation of magnetic fields can be counted in the

hundreds throughout the literature. It has been found that magnetic vector potential

(MVP) and magnetic scalar potential (MSP) based finite element formulations are

most widely used in applications to the magnetic field problems in electrical machines

and devices.

In the 1960's, Erdelyi et al were among the earliest to attempt finite difference

solutions of magnetostatic problems in electric machinery [4, 5, 6, 7, 8]. These authors

used finite difference discretization for solving 2D partial differential equations which

govern the MVP or MSP problem in the solution region. Relaxation techniques

were applied to the potentials in solving the problems involving magnetic material



saturation in an iterative manner. Demerdash and Hamilton [9, 10] in 1972 developed

a model using a finite difference approach for magnetic field computations in large

turbo-generators, which related the internal magnetic field distributions directly to

the load and terminal voltage conditions through an iterative process. A saturation

iteration method based on computations of updated magnetic permeabilities obtained

from the most recent flux densities and field intensities was implemented for solving

this class of problems involving magnetic material nonlinerities.

In the early 1970's, Silvester and Chari [11, 12] applied the 2D finite element

method to the solution of magnetostatic field problems. These authors used first

order triangular elements to discretize the 2D solution region. The Newton-Raphson

technique [11] was employed for the nonlinear magnetic field computation. Chari [13]

has extended the 2D-FE method to the investigation of eddy current problems in

1974. The superiority of the finite element method over tile finite difference method

was demonstrated in papers by Demerdash and Nehl in 1976 [14] and 1979 [15].

These authors pointed out the strong advantages of the finite element method due

to its relative ease in handling complex geometric contours, boundary conditions, as

well as requirements of computer resources. Many other investigators have used 2D-

FE methods in their research areas. Example publications on the subject of 2D-FE

developments and applications can be found in references [16] through [20].

Numerical computation of 3D magnetostatic fields in electrical machines and de-

vices appeared in the literature in the early 1970's. Holziner [21] developed a method

based on integral formulations for solving 3D magnetic field problems. Kozakoff and

Simons [22] have solved the differential equation associated magnetic scalar potential

problems. Muller and Wolff [23], as well as Djurovic and Carpenter [24] have derived

3D finite difference formulations using MSP for magnetostatic computations.

Three dimensional magnetostatic field analysis using 3D-FE methods appeared

in the literature in a paper by Guancial and DasGupta [25] in 1977. These authors

used curl-curl MVP partial differential equation with the zero divergence constraint

on the MVP to formulate their solution method. Also in 1977, Zienkiewicz et al [26]

published a paper in which the authors introduced the concept of reduced MSP in

solving magnetostatic field problems using the finite element method.

Simkin and Trowbridge [27], in 1980, developed the two scalar potential 3D-FE

formulation, which successfully overcame the difficulty of the reduced scalar potential

method of reference [26] in computing magnetic fields involving ferromagnetic mate-



rials. Later, the ideaintroduced by the two scalarpotential method [27]wasadopted

by investigators in developingother scalar potential formulations [28, 29]. In 1982,

Campbell et al [30] publisheda paper in which a 3D-FE MSP modeling method for
permanentmagnetswaspresented.A 3D finite differencecomputation method based
on the conceptof extendedMSP waspresentedin a paper by Lieseet al in 1984[31].

In 1980, Demerdashet al [32] developeda 3D-FE formulation based on the
unconstrainedcurl-curl MVP partial differential equation for solving 3D magneto-

static problems. The complete 3D-FE formulation and applications to a 1.5 kVA
transformer problem as well as experimental verifications were reported in a series

of papers by these authors [32, 33, 34, 35]. In this work, magnetic saturation was
accountedfor using the saturation iteration method developedearlier by Demerdash

[9, 10]. Later, the samecurl-curl 3D-FE formulation in conjunction with a Newton-
Raphsontechnique for nonlinear magnetic field problemswas developedby theses

authors [36]in 1986.

Chariet al [37] publisheda paper in 1981on 3D-FE magnetostatic field com-
putation problem using a formulation basedon the vector Poissonequation which
stemsfrom the curl-curl equation with an assumptionof zerodivergenceof the MVP.
In the sameyear, Coulomb [38] presenteda formulation for a 3D-FE MVP solution
method. In Coulomb'sformulation, the author addedan extra term to the functional

usedby Demerdashet al [32] that attempts to imposea zerodivergencecondition of
the MVP.

These three formulations, that is Demerdash's,Chari's and Coulomb's, were
discussedby many other investigators. Among thesediscussionsare the papersby

Kotiuga and Silvester [39], as well as Csendeset al [40]. The discussionswere on
the questionof tile uniquenessof the MVP computedfrom thesethree formulations.
Many other commentsand debateson this uniquenessissue appearedlater in the
literature. In 1982,Mohammedet al [41, 42] published papersshowingthe unique-
nessof the MVP computed from the unconstrainedcurl-curl formulation [32] using
first-order tetrahedral elements. In 1988,Hoole et al [43] showedtest computation

results using the above mentionedthree different MVP 3D-FE formulations for an
air-core coil problem. Hoole et al reported that the unconstrained curl-curl MVP
formulation yielded the best resultson the magnetic flux densities. Also in this work

[43], the authors tried to explain the uniquenessof the numerical results from the
unconstrainedcurl-curl MVP formulation of reference[32].



In recent years,pre-conditionedconjugategradient methods [44, 45] havebeen
introduced in the areaof magneticfield computation for solving the large scale linear

systems of equations resulting from 3D-FE analysis. Substantial savings of computer

cpu times and memory requirements can be achieved by using this type of solver,

which made it possible for one to contemplate solutions of large scale practical mag-

netic field problem using 3D-FE methods. These savings in computer resources are

in comparison to those resource requirements associated with the commonly used

solvers, which are based fully on Gauss elimination or Choleski decomposition.

Also, magnetic field 3D-FE computations using edge-elements were introduced

by Bossavit [46], and subsequently have been reported on in 3D-FE magnetostatic

field analysis by Barton and Csendes [47] in 1987. This method is based on the uncon-

strained curl-curl MVP equation in conjunction with tetrahedral edge-elements. The

total number of unknowns computed in this formulation is equal to the total number

of element edges. Meanwhile, among recent works of significance [48] introduced by

Nehl and Field, is a method of adaptive refinement of first-order tetrahedral 3D-FE

meshes to improve the accuracy of the unconstrained curl-curl MVP method [32].

In the category of application of numerical magnetic field computation methods

to the simulation of the performance of ac rotating electric machines, most of the ear-

lier works were centered on the calculation of conventional direct and quadrature axis

reactances from 2D field computations. These d- q type reactances (inductances)

computed from 2D magnetic field solutions were used in conjunction with network

phasor type calculations (frequency domain) to obtain machine performance charac-

teristics. Demerdash et al in 1972 [9, 10], Fuchs and Erdelyi in 1973 [49], Chari et

al in 1981 [50], and other investigators published papers of such work on ac machine

performance computations. In these methods, the conventional steady state d - q

theory forms the basis, and the individual phase winding mmfs (current sheets), and

inductances were assumed to vary sinusoidally with respect to the rotor position an-

gle, thus yielding the well known rotor angle independent inductance (or reactance)

terms La (or xa), and Lq (or xq).

In 1981 and 1982, Nehl, Fouad, and Demerdash [17, 18, 51, 52] developed a

computer aided model for brushless dc machines, in which a 2D-FE magnetic field

computation model and a time domain network model under the natural abc-frame

of reference were used for machine performance simulation. In this work, 2D-FE

magnetic field computations were performed for a series of rotor positions to obtain



various machine winding inductances as functions of the rotor position. The advan-

tage of the natural abc-frame of reference used by these authors is that the effects of

the space harmonics of the magnetic flux distribution can be fully included in study-

ing such machine performance characteristics. Also, upon use of the abc-frame of

reference, one directly deals with measurable machine armature phase currents such

that the electronically switched power conditioner circuits or loads can be easily and

directly incorporated into the simulation network of the whole machine-power elec-

tronic system, without the need for any interfacing mathematical transformations.

In 1985, Nehl et al [53] applied this model to the study of brushless excitation sys-

tems for large turbine-generators. In 1987 Nyamusa and Demerdash [54, 55], and in

1988 Arkadan, Hijazi and Demerdash [56, 57] extended this model to study steady

state and transient performance characteristics of various types of permanent magnet

motors and generators.

In 1987 and 1989, I(ulig et al [58, 59, 60] presented a method to study transient

currents in generator windings and damper circuits caused by internal and external

faults as well as abnormal operations using a natural abc-frame of reference simulation

model. In these authors' work, 2D finite difference methods were employed to the

computation of magnetic fields and associated machine inductances at a series of rotor

positions.

Other applications of 2D-FE magnetic field computation methods to rotating

electric machinery are found to be in electromagnetic torque and force as well as iron

loss calculations. References [61] through [63] are examples of work on such research

topics.

Publications in the area of application of 3D magnetic field analysis to electric

machinery are found to be much less in numbers than those in the 2D magnetic field

analysis area. The reasons for this are not only due to the complexity of the problem,

but also due to the high cost of such 3D-FE analysis and computation for a practi-

cal rotating electric machine. It should be mentioned that between 1963 and 1966

Tegopoulos [64, 65, 66, 67, 68, 69] had used analytical methods to study 3D flux dis-

tributions and resulting forces on the end windings of turbine generators. In his work

the concept of MVP was used to calculate the 3D distributions of flux densities. The

volume current distributions in the winding end-turns were approximated by current

sheets. Magnetic forces on the winding end-turns were studied. These methods are

the predecessors to the numerical 3D magnetic field analysis in electric machinery.
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In 1981, Weiss and Stephen [70] published a paper in which the magnetic fields

in the end-turn region of a turbine-generator were studied using a finite elment based

method. In this work, the 3D magnetic fields in the end-turn region were computed by

superposition of a series 2D-FE solutions, to account for the spatial mmf harmonics,

performed in a longitudinal cross-section (r- z plane) of the machine. This method is

fully based on the assumptions of magnetic linearity and axisymmetric geometry. In

the same year, Davey and King [71] presented a MSP based method of a permeance

grid concept to calculate the magnetic field distributions in the end-turn region of a

turbine generator. These authors assumed that the MSP distributions in the end-turn

region of the generator vary sinusoidally along the circumferential direction. Thus the

magnetic field computation was performed by these authors using a 2D permeance

grid in a longitudinal cross-section of the machine. Both of the above works represent

efforts of using 2D field computations which approximate the actual 3D field problems

being solved.

In the area of 3D-FE applications to rotating electric machinery, results of com-

putation of the winding self inductance of a stepping motor using the two scalar po-

tential method were presented by Simkin and Trowbridge [27] in 1980. Synchronous

inductances of a superconducting machine were calculated from a MSP method in a

paper by Zheng and Wang [28] in 1985. Brauer et al [72, 73] in 1985 and 1988 pre-

sented applications of 3D-FE magnetic field computations to an automotive Lundell

alternator. The unconstrained curl-curl MVP formulation was used in these authors'

3D-FE model. The end-turn region of the stator winding was not included in this

3D-FE work. Magnetic field analysis using 3D-FE MVP formulations for actuators

in automotive applications have been reported in papers by Brauer et al [74] in 1988,

as well as Nehl and Field [48, 75] in 1989. However, up to the time of publication of

this dissertation, an example of a complete model using 3D magnetic field computa-

tion for design, analysis, and prediction of performance of a rotating electric machine

could not be found in the literature.

1.3 Definition of the Problem

The objective of this research is the development of computer-aided models for study-

ing effects of various design changes on the machine parameters and performance

characteristics of MLAs. The core of this computer-aided modeling is a 3D-FE mag-

11



netic field computation capability (3D-FE programs),which allowsone to compute
3D magnetic field distributions throughout the entire magnetic circuit of this class
of MLAs. This 3D-FE computation model can be applied to these MLAs at any

desiredmachineoperating conditions (different magneticsaturation levels)with the
comprehensivecapability for changingvarious dimensional(geometric)and material

(B - H characteristics) parameters for design synthesis and optimization purposes.

Such magnetic field computations were to be performed under a series of rotor posi-

tions with respect to the stator. These rotor positions cover the entire ac cycle of the

associated machine steady state operation. The 3D-FE magnetic field solutions yield

the machine winding self and mutual inductances as functions of the rotor position

angle. These inductances are used as key parameters in a time-domain, natural abc-

frame of reference state model (state-space network programs) to simulate various

machine performance characteristics. Such an integrated 3D-FE and state-space net-

work computer-aided modeling is anticipated to form a powerful means for the design

and analysis, as well as prediction of performance of the MLAs in space station solar

dynamic power generation applications. To the best of this author's knowledge, such

an effort of global 3D-FE magnetic field computation throughout the complete mag-

netic circuit of a rotating electric machine coupled to detailed machine performance

calculations was carried out in this investigation for the first time.

The basic concept of this computer aided modeling can be used to calculate (pre-

dict) instantaneous voltages and currents of electric machinery under any steady state

and dynamic conditions. However, the research effort in this dissertation is mainly

focused on the simulation of the periodic, yet non-sinusoidal, voltage and current

waveforms associated with the MLA's various windings, as well as electromagnetic

torque profiles, under MLA steady state operating conditions.

The concepts and package of computer programs developed in this research was

tested by their practical applications to a Y-connected, 4-pole, 36 stator slots, 1200

Hz, 36,000 r/min MLA, rated at 14.3 kVA, 0.75 lagging PF, 120 V (L-N). Comparisons

between the computed results and laboratory test results [3] are presented in this

dissertation whenever possible. The main design data of the example 14.3 kVA MLA

is listed in Table (1.3.1) and illustrated in Figures (1.3.1) through (1.3.4). Further

details on this example 14.3 kVA MLA can be found in references [2] and [76].

As an initial step towards the development of a successful 3D magnetic field com-

putation model, a thorough investigation of existing 3D-FE magnetic vector potential

12



Table (1.3.1): Main DesignData of the Example 14.3kVA MLA

A

B

C

D

E

D

Number of Poles
Rated Speed
Frequency
Rated Terminal Voltage

Rated Output

Total Weight

Electromagnetic Weight

_tator

Circuits

Slots

Conductor

Turns per Coil

Number of Slots Between

Coil Sides Plus One

Line to Neutral Resistance

Stack Length

Rotor

Weight

Outside Diameter

Pole Length

Fields

Conductor

Total Turns

Resistance

Airgaps

Length of Main Airgap

Length of Auxiliary Airgap

Materials

Rotor Poles

Rotor Interpole Section

Stator Laminations

Frame

Conductors

Non-Magnetic Separator

4

36,000 r/min

1200 Hertz

120 Volts (Line to Neutral)

14.3 kVA (0.75 P.F.)

51 Pounds

35 Pounds

4

36

5 Strands - No. 24 AWG

9

6

0.0322 fi (Measured)

1.65 Inches

11 Pounds and 15 Ounces

3.26 Inches

1.65 Inches

No. 17 AWG

722

4.85 fl (Measured)

0.02 Inches

0.02 Inches

SAE 4340

Inconel 718

0.004 Inch AL 4750

Annealed 1010 Steel

Copper

Copper
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(MVP) formulationswascarriedout. Experimental computationswereperformedus-

ing three existing methods [32, 33, 34, 38, 37] to assess their validity and accuracy.

It was found by this author that among the three existing 3D-FE MVP formulations

only the unconstrained curl-curl formulation [32, 33, 34] yielded stable solutions for

problems which involve the side by side presence of air and iron materials. Fur-

thermore, this author found some numerical difficulties associated with the use of the

first-order finite elements in the solution of the unconstrained curl-curl MVP method.

Thus, these existing 3D-FE MVP formulations cannot be directly employed as the

basic computation method for the MLA problem at hand. Details on these aspects

can be found in Section 2.1 of Chapter 2 in this dissertation, as well as in references

[77] and [78].

An investigation of the existing 3D-FE MSP formulations was also carried out to

assess the possibility of using existing MSP based 3D-FE formulations for this MLA

problem. The advantage of the MSP based formulations is that there is only one

unknown at each node in a resulting finite element grid, which leads to approximately

one third of the number of unknowns that must be computed in solutions based on

MVP FE formulations. However, due to the difficulties stemming from the inherent

incapability of handling volume current distribution in the MSP formulations, the

existing MSP methods introduce extreme difficulties in their applications to problems

involving very complex geometries and volume current distributions, which is precisely

the case in rotating electric machines of the type at hand. A thorough study centered

on the two scalar potential method [27] is given in Section 2.2 of Chapter 2 in this

dissertation.

Hence, an innovative method of combined use of magnetic vector and scalar

potentials, which will be referred to from this point forward in this dissertation as the

combined MVP-MSP method, was developed to form the core of this computer-aided

modeling effort. In this method, the unconstrained curl-curl MVP formulation with

second-order finite elements is used to compute the curl component of the magnetic

field intensity in the current-carrying regions of the MLA, while the concept of MSP

is used throughout the entire solution region to complete the total magnetic field

computation. This innovative method takes advantage of the desirable characteristics

of both the exclusive MVP and MSP based formulations. This combined MVP-MSP

method was found to be most suited for large scale aD magnetic field problems in

rotating electric machines. The theoretical development of this combined MVP-MSP

18



method, as well as the implementationof the associatedfinite element formulation,
werecarried out in this research, and are detailed in Chapter 3 and Chapter 4.

The developed 3D-FE model is required to have the ability to handle magnetic

material nonlinearities and anisotropies. This is because the magnetic circuits of such

MLAs are saturable, and the armature cores of such machines are laminated, which

results in unequal magnetic permeances in axial versus circumferential and radial

orientations. Meanwhile, methods of 3D-FE gridding must be studied and developed

to discretize the global solution volume including the extremely difficult geometries

of the bimetallic rotor and armature winding end-turn region in this class of MLAs.

Also, gridding methods which allows the linking of the stator and rotor 3D-FE grids

at any desired rotor to stator relative position needed to be developed in the course

of this work, see Chapters 5 and 6. Details on the application of the combined MVP-

MSP based 3D-FE model to the computation of magnetic fields in the example 14.3

kVA MLA are given in Chapters 6 and 7.

Again, the main interest of this research is in the simulation of the periodic, yet

non-sinusoidal, voltage and current waveforms, as well as the other performance char-

acteristics of such MLAs under various operating conditions. Based on the literature

review in the previous section, the concept of time-domain, abc-frame of reference

state modeling was adopted to form the basis of the machine performance simulation

model. Such an abc-frame of reference state model allows a full inclusion of the space

harmonics associated with machine parameters as obtained from the global 3D-FE

magnetic field solutions, as well as the time harmonics in the current and voltage

waveforms of the various computed results. Flux linkages were used as the state

variables in the simulation model of this investigation. Accordingly, non-sinusoidal

winding currents and voltages were calculated from the resultant flux linkages. De-

tails on the development of this state space model are given in Chapters 8 and 9. Also,

methods of calculation of electromagnetic torque profiles including torque ripples are

detailed in Chapter 9.

This developed state space model was used to compute the open-circuit and

short-circuit characteristics, as well as the rated and over-rated load performances

of the example 14.3 kVA MLA. Results and experimental verifications are given in

Chapters 7 through 9. Finally, conclusions and recommendations for future work are

defined in Chapter 10 of this dissertation.
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Chapter 2

Survey of 3D Magnetic Field

Finite Element Formulations

Basic formulations of 3D-FE magnetostatic field computations have been introduced

since the late 1970s. Among these formulations, are two magnetic potential proce-

dures, the magnetic vector potential approach, MVP, and the magnetic scalar poten-

tial approach, MSP. In both formulations the continuity of the normal component of

the flux density, B', and the tangential component of the field intensity, H, are sat-

isfied automatically throughout the solution region (volume). This is accomplished

without having to force such continuities at the interfaces between different material

regions when the magnetic field is solved for directly.

In Maxwell's equations, which form the basis of both formulations, the mag-

netostatic fields are expressed in terms of flux density, B, and field intensity, H, as

follows:

V x H = 7 (2.0.1)

_7._=0 (2.0.2)

where 7 is the source current vector. The constitutive relations between the magnetic

flux density and the magnetic field intensity can be written as follows:

= _. _ (2.0.3)

_=_.77 (2.0.4)
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where_, and _, are tensorsdescribingthe generalinhomogeneous,anisotropic reluc-
tivity and permeability of the medium, respectively.

Mathematically, the solenoidalnature of Equation (2.0.2) allowsoneto express

flux density, B', by a curl operating on another vector field. In this case the vector

field is the MVP, _. Thus, "B, can be expressed in terms of A" as follows:

= V x "A (2.0.5)

By substituting for B from Equation (2.0.5) into Equation (2.0.3), and further sub-

stituting the result into Equation (2.0.1), one obtains the following:

D

Vx(f. Vx A)=J (2.0.6)

Equation(2.0.6), in conjunction with appropriate boundary conditions, defines the

magnetic field problem in terms of the M\rP. Final determination of the magnetic

flux density, B, can be achieved through Equation (2.0.5) by solving for the vector

potential _. Equation (2.0.6) is referred to henceforth as the curl-curl MVP equation,

which serves as the basis for various 3D-FE MVP formulations that will be reviewed

in Section 2.1. The disadvantage of a MVP based FE solution, as compared with a

MSP based approach, is that three degrees of fi'eedom have to be computed at every

node of a given FE grid, which requires much longer computer time and larger storage

(memory) requirements than the MSP methods.

Meanwhile, the concept of MSP was introduced into magnetic field computa-

tions in a similar manner to that by which the electric scalar potential was introduced

in electrostatic field problems. In a solution region where the excitation current den-

sity, J, equals zero, Equation (2.0.1) becomes

v x = 0 (2.0.7)

Equation (2.0.7) is characteristic of irrotational vector fields. Since any irrotational

vector field can be mathematically described as a gradient of a scalar field, one can

write the following:

= -re (2.o.s)

where, ¢ is the MSP. By substituting Equation (2.0.8) into Equation (2.0.4), and
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further substituting the result into Equation (2.0.2)one obtains the following:

V. (_V0)=0 (2.0.9)

Equation (2.0.9), which is in the form of Laplace's equation, together with the ac-

companying boundary conditions, defines the MSP boundary value problem. This

formulation is attractive for FE solutions because it is written in terms of only one

variable (one degree of freedom) at each node. Unfortunately, most practical en-

gineering problems involve some electric current distributions in the establishment

of a magnetic field. In such cases Equation (2.0.9) cannot be used directly to solve

such problems, unless approximations regarding the volume distribution of the source

currents or other special treatments are undertaken.

A survey of existing finite element MVP based and MSP based formulations was

performed. As a complementary part to this survey, several test problems were com-

puted using the formulations which seemed to have potential as candidate methods

for the main 3D magnetic field problem which is the focus of this work. Results, as

well as theoretical and/or numerical difficulties explored during this survey activity

are reported, and discussed in the following sections of this chapter.

At the end of this chapter, as a culmination of this survey and the exploratory

examples, an innovative concept is introduced. It consists of a mix of magnetic vector

and scalar potentials. This concept enables the solution of large scale 3D magnetic

field problems which involve extremely complex physical geometries, and difficult

material topologies, such as the 3D magnetostatic field within the class of MLAs

conducted in this research.

2.1 Three Dimensional Finite Element Magnetic

Vector Potential Formulations

2.1.1 Three Existing 3D-FE MVP Formulations

(Demerdash's, Coulomb's, and Chari's Formulations)

As mentioned earlier (Section 1.2), there are three well known MVP formulations for

finite element computation of 3D magnetic field problem, see references [32, 33], [38],
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and [37].

The first formulation was developed by Demerdash et al, in 1980 [32, 33]. In

Demerdash's 3D-FE formulation, the curl-curl MVP equation, in conjunction with the

associated boundary conditions, was used to solve the magnetic field problem. This

equation, without any constraint on the divergence of the MVP, can be re-written

here as follows:

D

V x (_.V x A)-J= 0 (2.1.1)

where, again, _ is the tensor of magnetic reluctivity, and "J is the distributed source

current density vector. The functional used in Demerdash's 3D-FE formulation,

whose minimum corresponds to the solution of Equation (2.1.1), can be written as

F(A) = [_(H-B)- J. A]dv. (2.1.2)

This 3D-FE approach is referred to henceforth as the unconstrained curl-curl MVP

formulation. In Demerdash's work, first order tetrahedral finite elements were used for

discretization of the global solution region, V. Excellent agreement between the com-

putational and experiment results was reported by the authors in their applications

to linear magnetic problems (without magnetic material saturation) [34]. Excellent

results were subsequently reported in cases involving nonlinear magnetic materials

[35, 36]. Anisotropic reluctivity due to laminated iron-cores was easily accommo-

dated in this formulation by setting of the reluctivity tensor along and perpendicular

to the planes of the magnetic core laminations.

Applications of this unconstrained curl-curl formulation to magnetic field prob-

lems in electrical machines were also reported by other investigators [72]. This first

attempt by Demerdash and his colleague to solve linear and nonlinear magnetic field

problems using 3D-FE methods was followed by several discussions and rebuttal pa-

pers on the question of the uniqness of the vector potential, A, obtained from this

curl-curl formulation and the associated solutions. This uniqueness issue will be dis-

cussed in Section 2.1.3.

The second formulation was reported by Coulomb (no relation to the well known

Coulomb of the Coulomb's Law and Coulomb's Gauge) in 1981 [38]. Coulomb's for-

mulation makes use of an approach in which one imposes a constraint that seeks to en-

force zero divergence of _" in the curl-curl MVP formulation. Accordingly, Coulomb's
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functional is of the form (compare with Equation (2.1.2))

H)- J. A+ ] (2.1.3)

where A is a parameter, commonly referred to as a penalty factor, which sights to set

the Coulomb Gauge condition, V. A = 0, in the solution.

Coulomb and supporters [39, 40] claimed that adding such a divergence term to

the functional of the original unconstrained curl-curl MVP formulation is equivalent

to forcing a zero divergence of A throughout the field solution region, and hence, a

unique solution of A can be guaranteed. Despite the fact that Coulomb's formulation

has been referred to in numerous papers, to the best of this author's knowledge, no

numerical results on any practical engineering problem, which contains a mix of air

and iron materials, has ever been reported in the literature.

The third MVP finite element formulation was presented by Chari, et al [37],

in 1981. In Chari's formulation, the medium material was assumed to have homo-

geneous and isotropic permeability. This allows one to move the reluctivity term

(u) in Equation (2.1.1) outside the curl-curl operation. Division of both sides of the

equation by _,, yields the following:

V x (V' x A) = pJ (2.1.4)

Equation (2.1.4) can be further split into two parts by the vector identity operation

as follows:

v x (r x _) = _(_. _) - _7_ = 1,7 (2.1.5)

The term, V(_7. A), in the above equation was removed by Chari et aI by a claim

that the zero divergence condition, V • A = 0, must hold for any magnetic potential

in engineering problems.

Obviously, the assumption about homogeneous and isotropic permeability re-

stricts Chari's formulation from applicability to many electrical machinery problems

which necessarily involve nonlinear material permeabilities due to magnetic satura-

tion, as well as anisotropy due to the presence of laminated iron cores. Besides,

contrary to Chari's declaration, zero divergence is not a necessary condition for the

solution of the type of bounded magnetic vector potential problems for which his 3D
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finite element formulation was intended. This will be shown in Section 2.1.2.

The removal of the divergence term in Equation (2.1.5) reduces the curl-curl

equation to a vector Poisson's equation as follows:

272_ = -pJ (2.1.6)

The functional utilized by Chari in his formulation can be written as follows:

F(A)=-- fv[2U(VA_" VA_ + VAu. VA_ + VAz. VA,)- J. A ] dv (2.1.7)

Element equations of the above three FE formulations, which are used to form the

global linear systems in the following finite element examples, are listed for reader's

convenience in Appendix (A).

2.1.2 Test Computations and Comparisons on Existing

3D-FE MVP Methods

The above methods are now applied in the solution of some test examples. A similar

work of such comparison, but performed only on a simple air-core problem, was

reported by Hoole et al [43].

The first example is a coil problem, the detailed design of which is found in

reference [80]. This coil is surrounded by air (free space) as shown in Figure (2.1.1).

The solution region covered by the 3D-FE grid in Figure (2.1.1) is taken as one

octant of the whole coil structure and its surrounding air. Three approaches, namely

Demerdash's [32, 33], Coulomb's [3sl,and Chari's [37], are applied to this problem.

Results of the computation of the magnetostatic field of this coil at an excitation

current, I = 5A, are reported in Table (2.1.1). In addition, Figure (2.1.2) shows the

plots, on the grid surfaces, of the equipotential lines, I_ I, obtained from the three

above mentioned methods.

The calculated results in Table (2.1.1) include the following physical quantities

and parameters:

1
(1) The total magnetic energy computed by 7 fy .4 • J dr,

(2) The total magnetic energy computed by ½ fv B. H dv,
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Table (2.1.1): Coil Results ( I = 5.0 A )

Formulation Demerdash's Coulomb's Chari's

Energy from

ifA Jdv (J)"

Energy from

1
-_ f B. Hdv (J)

0.1167

0.1167

0.1142

0.1142

0.1142

0.1142

Maximum
0.03977 0.04014 0.04014

IVxAI (T)
Maximum

0.01303 0.00499 0.00499
IV.AI (T)

Max. [ _-_ ] 5.88 2.23 2.23
W×A

Ave. [ _.y.._4 [ 0.533 0.239 0.239
VxA

Calculated
0.0746 0.0726 0.0726

Inductance (H)

Measured Value of Inductance: 0.0734 (II)
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(3) The highest valueof calculatedelementalflux density,Max. I V x A I,

(4) The highest value of calculated divergence of the vector potential, Max. ] V. A [,

(5) The highest value of the ratio of the divergence to the curl of the vector potential,

Max. ](V. A')/(V x A') [, calculated at the centroids of the elements,

(6) The weighted average value of the ratio of the divergence to the curl of the

vector potential, Ave. [ (V • A')/(V x _) l, calculated at the centroids of the

elements (the weighting factors are the elemental volumes), and

(7) The terminal inductances.

The values of the divergence of _ shown in Table (2.1.1) are calculated from

the resultant vector potential at the centroid of each element. The following is the

equation used for the divergence calculation:

4

• • T ^ TV A = y" V (=_iAixax + Ni,4iy&_ + _iAizfiz)
i-----1

V
4 ON, ONA _Ai) (2.1.8)

i=l (JZ Oq~ z

where Ai_, Ai u, and A,_ are the components of the calculated nodal vector potentials,

and the Ni's are the finite element shape functions calculated at the centroids of the

elements.

It can be seen that the three methods yield similar results on total stored mag-

netic energy and on maximum flux density magnitude, Max. V x A. The coil induc-

tances deduced fi'om stored energy are in agreement with the laboratory test value

obtained [80] within a reasonable error margin• However, the maximum divergence

(V. A) has a non-negligible value (nearly 38.5% of that obtained in solutions based on

Demerdash's method) in both the Chari and Coulomb solutions. A zero divergence

is a basic condition on both of these formulations.

The second example is a 1.5 kVA, 120/277 V, shell-type transformer, the detailed

design of which can be found in references [34, 80]. The structure of the transformer,

and the tetrahedral grid which occupies one octant of the whole transformer mag-

netic circuit region, are shown in Figure (2.1.3). Since Chari's method [37] does not

include magnetic material saturation, a lower excitation current of about 20% of its

rated magnetizing current was chosen to represent an unsaturated iron core condition.
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A further limitation of Chari's formulation is the fact that the inherent anisotropy

introduced by the presence of iron lamination on material permeability cannot be

included. That meant the iron reluctivities in the x, y, and z directions have to be

taken equal, that is v_ = v_ = vz = vi,.o,_.

The same set of physical quantities and parameters previously calculated in

the case of the coil example, namely the flux densities, stored energy and device

inductances, were calculated in this example. The results are summarized in Table

(2.1.2). The MVP equipotential lines, ['A I, computed from Demerdash's formulation,

are shown in Figure (2.1.4).

As can be seen in Table (2.1.2), Demerdash's formulation gives a result for

the unsaturated magnetizing inductance of the transformer which is in reasonable

agreement with the measured inductance value from the laboratory test. However,

the other two methods [38, 37] yield totally um'easonable values of the stored energy,

the flux density, (B = _7 x A), and the unsaturated magnetizing inductance. It is

obvious that both Coulomb's [3S] and Chari's [37] methods totally break down in iron

cores of the type given in this transformer problem.

The third example is a simplified magnetic circuit of the 14.3 kVA Modified

Lundell Alternator discussed earlier in Chapter 1. A cut-away picture for one half

axial length of the magnetic circuit geometry is shown in Figure (2.1.5). This magnetic

circuit consists of an iron rotor, an iron outer casing, and two ring-shaped field coils

mounted at the stator side (casing) towards the two end-bells. In between the rotor

and the inner holes of the end bell (casing) there are two identical airgaps at the two

ends of the machine to allow the rotor to rotate. Because of symmetry, only a quarter

of the total magnetic circuit volume needs to be taken as the solution region. The

3D tetrahedral grid covering the solution region is also shown in Figure (2.1.5).

Since the permeability of the iron material has a much higher value than the

air permeability, almost all the magneto-motive force due to the excitation of the two

field coils is expected to be consumed across the airgaps. In this case an estimation

of the radial flux density component, Br, in the airgap can be obtained by simple

computation, using the following equation:

B,.= .o(2bx:)/(2-'-.)= .ob3,":/t (2.1.9)

where I:.,V:is the ampere-turns of one field coil, and l is the radial length of one
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Table (2.1.2): 1.5kVA TransformerResults( I = 0.25A )

Formulation Demerdash's

Energy from
1-_f A . ad,, (J)
Energy from

1
-_ f B. Hdv (J)

Maximum

IVxAI (T)

Maximum

IV.A] (T)

Max. I v--_ I
WxA

2.774x10 -3

2.774x10 -3

2.0992

5.571

66.0x 103

Ave, ] v._y_] 0,114x10 a
VxA

Calculated
0.7102

Inductance (H)

Coulomb's

0.0083x10 -a

0.014x10 -3

0.0072

0.00412

23.01

0,814

0.0037

Chari's

0.0010xl0 -a

0.0035x10 -3

0.0015

0.00091

65.68

0.780

0.0009

Measured Inductance: 0.737 (It),

from Open Circuit Test at I = 0.25 (\)
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Figure (2.1.4) Plot of Equipotential Linesof Magnitude of MVP on Grid Surface
of 1.5kVA Transformer
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airgap.

The estimated value of the radial flux density component, B,, for this test

example is shown in Table (2.1.3), together with the results computed by means of

the three methods. Naturally, one would expect the value of B, obtained from 3D-FE

computation to be close to this estimate. Again, as can be seen from the table, only

Demerdash's formulation yields a reasonable answer. The other two methods yield

totally unreasonable (meaningless) results.

From the above test computations, one can conclude that the curl-curl formu-

lation without explicit constraint on (V. _) is the only reliable method among the

existing MVP formulations, particularly when a mix of air and iron cores is encoun-

tered. Moreover, one can also see that divergence of'A in a vector potential boundary

value problem does not naturally assume a zero value. The non-zero values of (V.A) in

the results of Demerdash's method did not affect the accuracy of the numerical result

of the flux densities and other dependent quantities such as energy and inductances.

The non-zero (V. _) values in the results of the other two methods [38, 37]

shown in Table (2.1.1-2.1.3) indicate that these formulations failed to enforce the

zero divergence condition, which is a basic condition of both formulations. The fact

that (V. A') is not equal to zero in the results obtained from Coulomb's and Chari's

methods is a direct violation of the necessary V × (uV × _') = 7 condition in their

approaches. This explains why Coulomb's and Chari's formulations do not succeed in

certain types of magnetic field problems, particularly in those applications involving

more than one type of material within the global solution volume.

2.1.3 Theoretical and Numerical Difficulties in

the Curl-Curl MVP Formulation

As stated in Section 2.1.1, Demerdash's unconstrained curl-curl MVP formulation is

based on the curl-curl MVP equation without any explicit constraint on the divergence

of the MVP. However, according to Helmhotz theorem [86] a vector field is defined

only if both its curl and divergence components have been defined. Thus, a uniqueness

question arises with regard to the results of the magnetic vector potential obtained

from Demedash's formulation. Many investigators [41, 43, 75] have acknowledged

the fact that the non-uniqueness of A does not affect the validity of the resulting
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Table (2.1.3): Simplified Magnetic Circuit - Modified Lundell
Alternator Results

Formulation II Demerdash's Coulomb's Chari's

Energy from
1

f A. Jdv (J)

Energy from

1
f B. Hdv (J)

0.05862

0.05862

0.01043

0.01489

0.00411

0.00269

Maximum
1.3636 0.3288 0.0376

IVxAI (T)

Maximum
2.3985 0.1316 0.035.5

I _". A I (T)

Max. I v--_ I 5.78×103 30.20 1.83
W×A

Ave. I v--Z_A [ 0.14 xl0 3 0.692 0.0355
W×A

Be in
0.2901 0.0700 0.0045

Airgap (T)

Airgap B_ Calculated from _'-H. dl = I_n¢ios¢d:

0.28 < B, < 0.30 Tesla
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flux density vector, "B. All along, correct valuesof B are our main objective in field

computation in applications of the type at hand. However, if the uniqueness of A

is not guaranteed, the resultant linear global system of FE equations based on the

unconstrained curl-curl formulation may lead to an infinite number of solutions. That

is, the global system of equations may be nearly singular (highly ill-conditioned), thus

resulting in a numerically unstable system. The description of the uniqness problem

can be explained below.

Consider the curl-curl boundary value problem stated as

w

Vx (vVx A)=J in V (2.1.10)

n

A Is = Constant Vector on S (2.1.11)

where V is the 3D solution region, and 5' is the boundary of the region, V. In addition,

the reluctivity, u, is a constant throughout, the solution region. Assume that both

_1 and A2, A1 _- "A'2, satisfy the curl-curl equation, Equation (2.1.10), as well as the

boundary condition, Equation (2.1.11). The difference between these two solutions

can be expressed as

5,4 = A1- A2 ¢0 (2.1.12)

It can be seen that this non-zero 5A is subject to the following conditions:

m _ u

Vx6A=Vx (Al-,42)=B-B=0 in V (2.1.13)

and

m m D

5A Is = At Is -A= Is= o on S (2.1.14)

m

The irrotational nature of the field 5A as expressed by Equation (2.1.13) is a necessary

and sufficient condition for the existence of a scalar function, ¢, whose gradient equals

&4. That is, one can express 5A as follows:

5"A = V¢ (2.1.15)
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At the boundary, such a scalar function, ¢ satisfies the following:

$"-A= V¢ = 0 on S (2.1.16)

According to the definition of B = V x A, A1 and _2 must be differentiable, so 6A,

or V¢ must also be differentiable. Thus, by taking the divergence of V¢, this scalar

function can be further expressed as follows:

v. v¢ = p(z,y, z) # o in V (2.1.17)

Meanwhile, on the boundary one has

v¢ Is= o or, s (2.1.1s)

Equation (2.1.17), in conjunction with Equation (2.1.18), is a boundary value problem

defined by Poisson's equation in the same solution region as the MVP problem of

Equation (2.1.10) and Equation (2.1.11). Here, the constraint of non-zero value for p

is used to exclude the trivial case of a constant 4_distribution from various possible

solutions to this Poisson's type of problem. (The constant ¢ distribution leads to a

zero V¢, or a zero 6--A, which violates the original assumption of Equation (2.1.12),

that is 6A ¢- 0)

For any other nontrivial b which satisfies the boundary value problem defined by

Equations (2.1.17) and (2.1.18), a non-zero V¢ = _--'A,subject to Equations (2.1.13)

and (2.1.14), must exist. In such case, _, defined by the curl-curl boundary value

problem of the Equations (2.1.10)-(2.1.11), would not be unique.

Now, we show that such a nontrivial solution of ¢ can be described in a unit

sphere. Consider an MVP boundary value problem defined by Equations (2.1.10)

and (2.1.11), where the solution region is a sphere of unit radius. Also, consider the

following scalar function in this spherical region:

¢ = (r 2 - 1) '_ n = 2,3,4,... (2.1.19)

where ¢ is defined in the spherical coordinate system. The (V), and (V • V) vector

operations on ¢ (Equations (2.1.17) and (2.1.18)), yields the following:

v¢ - 1)"-' 0 (2.1.20)
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Table (2.1.6): Results of the Simplified Magnetic Circuit of 14.3 kVA MLA

Grid Number Type of Number of Calculated Calculated

of Nodes

#i 3458

#2 3458

#1 4425

#2 4425

Element

first order

first order

second order

second order

Unknowns

8208

8208

11088

11088

Energy (J)

0.05862

0.05030

0.05882

0.05867

Br (T)

0.2901

0.2469

0.2899

0.2889

[______ Estimated Br from 5¢'H. dl = Ienclosed " 0.28 < Br < 0.30 Tesla
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(a) Grid #1 (b) Grid #2

Figure (2.1.10) Second-Order FE grids for the Simplified MLA Problem
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2.2 Three Dimensional Magnetic Scalar Potential

Formulations

In the category of 3D-FE MSP methods, one of the earliest successful applications,

without replacing current density volume distribution by approximations, was pre-

sented by Zienkiewicz, et al [26]. It is called the reduced scalar potential formulation.

In this approach the magnetic field intensity, H, is computed by superposition of two

fields, H,, and V¢, as follows:

= _ x7¢ (2.2.1)

m

In Equation (2.2.1) the field H, is the rotational, or curl, part of the total magnetic

field intensity, and is calculated by Biot-Savart's law as:

H s = 4---_lfv "J X V ( ! )dv (2.2.2)

where r is the distance from the integration point to the observation point, Figure

(2.2.1), and the volume integration extends over all the solution space. The rotational

property of H,, V x H, = J, is insured by Biot-Savart's law in Equation (2.2.2). The

remaining part of the field intensity, which is irrotational, is computed by magnetic

scalar potential using 3D finite elements. It should be pointed out that, on the basis

of Equation (2.2.1), V x H = V x H, - V x (V¢) = V x H,.

The name, "reduced scalar potential", is introduced for ¢ because the gradient

of this potential only represents part of the total field intensity. The zero divergence

condition of flux density, V • B = 0, is then used to obtain the governing equation for

the reduced scalar potential, which yields the following:

V. #(re) = 0 (2.2.3)

This reduced scalar potential approach is seldom used because a severe numerical

discrepancy in the value of H occurs in magnetic material regions due to the super-

position of the two components given in Equation (2.2.1). It is found that results of

H, and (-V¢_) in magnetic material regions have very large magnitudes which are

close to each other in value, but are in opposite directions. The net field has to be

calculated by superposition according to Equation (2.2.1). Thus, the cancellation of
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P(_',u', z')

d _ y,)2 + (z - z') 2

Figure (2.2.1) Biot-Savart's Law
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two quantities closein valuewhich are not computedto preciselythe samedegreeof

accuracyreducesthe overall precisionof the results [82].

A solution to this numericalproblemwasintroduced by Simkin and Trowbridge

[27], and is referred to as the "two scalar potential" solution method. In the two
scalar potential approach,the solution region, fl, is divided into two subregions,f'tl,
and f't2. The subregion,fll containsall the electric current sources,but it shouldnot
include any magneticmaterial with/, >> #0. The magnetic field and its associated

MSP problem in f_x are describedin the sameway as the reducedscalar potential
method, Equation (2.2.1). Therefore, in subregionill, one canwrite the following:

-H = -Hs- VO1 in f_l (2.2.4)

V. (¢Vc),) = 0 in f'tl (2.2.5)

where, again, ITs is obtainable via numerical integration by Biot-Savart's law.

The subregion f12 covers all the remainder of the 3D solution space. It does

not contain any electric current source, but includes all magnetic materials. In this

region H is irrotational. That is, a scalar potential, 4_2, can be directly introduced to

calculate the field intensity, where

"ff = - V cb2 in fi2 (2.2.6)

Here, d_ is called the total scalar potential because its gradient defines the entire field

intensity. That is, no superposition is required. Since H is formulated differently

in subregions ill, and f12, respectively, the continuity of normal component of the

flux density, B,,, and the tangential component of the field intensity, Ht, have to

be explicitly forced at the interface between the two subregions. These continuity

conditions can be written as follows for the continuity of B,_:

- = al (2.2.7)

m

and for the continuity of Ht:

(7, - = i (2.2.8)
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where fil is the normal unit vector on the fil - f12 interface pointing from f'/1 to fi2,

and [ is any unit tangential vector oi1 the interface. Equation, (2.2.7) can be further

rearranged as follows:

0¢i a¢2 --
m  -Tn- =

(2.2.9)

This equation shows that the discontinuity of the (/t0C/0n) term has to be forced at

the interface of fix and f12 to insure the continuity of the normal component of the

flux density. Meanwhile, from Equation (2.2.8), one obtains the following:

v¢2.i- 0 (2.2.10)

Consider a line integration of the left side of this equation on the fll - f12 interface

from an arbitrary point ,4 to an arbitrary point B. It yields the following:

/; VO2.__ f: UOl ._ = _/;-_,.d] (2.2.11)

or

(¢2B - ¢2A) -- (¢_S -- CIA) = -- H,. dl (2.2.12)

One can set the point A in Equation (2.2.12) as a reference point at which ¢2 is equal

to ¢1. It then follows from Equation (2.2.12) that

B

¢lS=--/A H_.dl (2.2.13)¢2S

Note that Equation (2.2.13) holds for any point B on the interface between f_l and

fi2. Therefore, in order to guarantee the continuity of the tangential component of

the field intensity, the discontinuity between ¢1 and ¢2 (the potential jump), which is

explicitly expressed by Equation (2.2.13), has to be forced (imposed) on the interface.

In this two scalar potential method, the superposition of field intensity, shown by

Equation (2.2.4), is carried out only in _1, the region without any magnetic material.

This effectively avoids the numerical problem associated with subtracting of two large

numbers one from the other (the cancellation problem) as found in the reduced scalar

potential approach alluded to earlier in this section. It should be pointed out that

H', in Equation (2.2.4) can be obtained by methods other than the Blot Savart's
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integration. In fact, any vector field with its curl componentequal to the electric
current distribution canbe consideredasa suitable H,. Under certain circumstances,

H, can be obtained by very simple hand calculations, as demonstrated in earlier work

done by this author, see reference [28].

The disadvantage of the two scalar potential formulation, as compared with the

vector potential formulation, is its inconvenience in applications. The subregion, ill,

has to be chosen with extreme care and judgement so that it includes all currents, but

it cannot contain any portions of iron material such as laminated cores or cast and

forged ferromagnetics, etc. This requirement will force fll to extremely difficult con-

tours and geometry in most practical engineering problems. For example, a problem

of any electric machine armature winding with its coil sides embedded in iron-core

slots would immediately lead to difficult contours for subregion, ill.

In many instances the current-carrying subregion, _1, has to be a multiply-

connected region in order to satisfy the partition requirement, such as the shell-type

transformer problem shown in Figure (2.2.2). In this case, 82 in subregion f12 may

become a multi-valued scalar distribution. This can be further explained through the

following integration which describes the nature of the magnetic scalar potential in

f_2, that is

£ /:52 = V52" d = - H. d7 (2.2.14)

where point a is the reference point and point b is the location at which ¢2 is con-

sidered. Multi-values can happen if the integral path laps around the currents in fh

by one or more times, see Figure (2.2.2). To avoid this situation, one has to set up a

barrier, or branch cut (to use more precise mathematical terminology), in f_2, so that

any closed path in f12 cannot enclose currents in f_l. However, after the barrier is

set, another potential discontinuity has to be forced on the barrier with respect to 52

at its two sides; for further details Straton [86] should be consulted. This adds addi-

tional difficulties to the process of determination of potential discontinuity conditions

at various interface boundaries.

Therefore, although the two scalar potential solution method allows one to avoid

the cancellation problem, it poses extreme geometric contour difficulties in dealing

with magnetic field problems having practical current-carrying region such as machine

windings, as well as current-iron mutually chain-linked geometries (see Figure (2.2.2)).
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Chapter 3

A Combined Magnetic Vector and

Scalar Potential 3D Finite Element

Analysis Procedure

The foregoing survey of existing 3D FE formulations discloses that 3D FE magnetic

field computations for electric machines and devices, such as the modified Lundell

alternator (MLA) problem, cannot be a straightforward effort of simply adopting an

available solution method. The second-order curl-curl MVP formulation is a suitable

candidate because of its accuracy in results and its convenience in application. This

method, however, yields a huge number of unknowns in the global FE system of

equations; in the hundreds of thousands for the MLA problem being investigated in

this research. On the other hand, the two scalar potential method [27], poses extreme

difficulties in dealing with machine armature geometry and current distribution in

the presence of armature slotting and end-turn configurations as well as overlaps.

This is despite the fact that the resulting size of the computational work in a real

engineering problem using the two scalar potential approach does not seem to be

beyond the capability of the newly developed super-computers such as the Cray-II

and Cray-YMP.

Under these circumstances, a new technique based on a combination of the

second-order MVP formulation and the MSP approach, has been developed. This

new approach will be demonstrated to be especially useful for the computation of

3D magnetic fields in electrical devices with complex magnetic circuit and winding

geometries, such as the MLA.
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3.1 Description of the Combined MVP-MSP

Approach

In this combined MVP-MSP approach, the entire solution region (volume), fl, is dis-

cretized by first-order finite elements. The second-order finite element MVP solution

is first applied locally on current-carrying regions to obtain the curl component of

the magnetic field intensity. This is done just once. Then, nonlinear MSP finite

element analyses are performed throughout the entire solution region to carry out

the magnetic field computations under all possible practical combinations of current

excitations and rotor positions in the MLA.

To apply the MVP and MSP solutions separately, the entire grid region f't is

partitioned into two sets of subregions. One is the current-carrying subregion, f_l. The

other is the remaining part, fl2, of the original global region, such that fll U f12 = ft.

Here, fll is a general notation for the current-carrying subregion, since more than one

current-carrying sub-subregions are allowed within _1 to effectively accommodate

various excitation windings (coils). Furthermore, it should be pointed out that the

subregion _1 not only contains conductors with current distributions, but also can

include iron material, which cannot be present in the two scalar potential method

(see Section 2.2).

At this stage of the partition of fl there are certain absolute constraints that

govern the geometries of the subregions, 9ta and _2. They can be summarized as

follows:

(1) There should be no possibility of a closed magnetic path entirely enclosed in

f12, within which there exists any net current (non-zero current) from subregion

(2) No electric current should exit or enter the outer surface of the subregion f_l.

The ability to include iron material in fix, which is a characteristic of this new ap-

proach, is very important. It allows one to easily satisfy the above absolute constraints

in practical engineering problems. Figure (3.1.1) shows a possible partition pattern

for an example shell-type transformer problem. In this example, the current-carrying

subregion 9ta contains the whole transformer coil, as well as the portion of the lam-

inated iron core within the coil structure. One can see from the example of Figure
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(3.1.1) that any closed path in 122 cannot enclose the current in the transformer coil.

It will be shown later in detail that the first constraint guarantees a single

valued MSP in 122, and the second constraint guarantees a single valued MSP jump

distribution (function) on the surface of 121. The advantage of a single valued potential

in 122, and a single valued potential jump distribution on the surface of 121, renders

the new approach a much more effective and preferable method than the two scalar

potential method.

In this MVP-MSP approach, the magnetic field intensity, H, within the current-

carrying region, ill, can be expressed as follows:

m

H = Hm,,p - V¢ in 121 (3.1.1)

where Hmvp is the curl component of the total magnetic field intensity. As mentioned

earlier in this section, the curl component of the field intensity, Hmvp, is computed

within fix through use of the curl-curl MVP second-order finite element formulation.

It should be pointed out again that the first-order finite element grid is first

established throughout the solution region, f't, which includes 121 and 122. The second-

order finite element grid in subregion fh for the MVP computation can be obtained

by adding extra nodes on the edges of the original first-order elements. The governing

equation for this stage of MVP computation (Equation (2.0.6)) is rewritten here for

the reader's convenience

m

V x (uV x ,4) = J (3.1.2)

Experience suggests that the boundary condition of A for this stage of the MVP

computation is A = 0, which physically means that all calculated magnetic fields are

bounded within 121 [32]. As will be seen later, such a bounded magnetic field (flux)

pattern simplifies the MSP jump distribution on the outer surface of 121. This MSP

jump distribution, as will also be seen later, is the main forcing function for the MSP

part of the whole MVP-MSP solution.

When subregion fll includes iron materials, the preferred choice is to use ex-

tremely high values of permeability for the iron material portions in the MVP part

of the solution. These permeabilities should not be confused with the final saturated

values which will emerge as a result of the MSP part of the solution.
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In discussingthis matter, the part of fh occupiedby materials with air perme-
air.ability is denoted as f't 1 , and the part of 9tl, occupied by iron materials is denoted

iron
as _-_1 •

In an example analysis of a problem with iron material in ill, a relative iron

permeability, pr = l0 s, WaS used by this author at this stage for the elements which

fll . From knowledge of magnetic fields, the calculatedbelong to the sub-subregion iro,_

field intensity in the region with the extremely high permeability will be extremely

small, and for all practical purposes near zero value. This allows one to further express

H,_vp in f_ro,, and in fl_ir as follows:

"-H,,_.p = voB,,,vp = Vo(V x _) in fl_ir (3.1.3)

 mvp = 0 i, fi,ro. (3.1.4)

In view of Equations (3.1.3) and (3.1.4), Equation (3.1.1) can be rewritten in sub-

subregions fl_ir and ironfil , as follows:

= H,,vp - V¢ in fi_i_ (3.1.5)

H = O- V¢ = -re in 9t_ °'_ (3.1.6)

Therefore, the field variables, "H_p, and (-V¢), which form the complete field in-

tensity, H, in subregion ill, will simultaneously have non-zero values only within the
air

non-magnetic sub-subregion ft_ . Hence, the numerical cancellation problem in the

iron material region associated with the reduced scalar potential method [26], which

results from the superposition of two extremely large numbers with opposite signs,

does not occur here.

The field intensity H in ,itfll , described by Equation (3.1.5) satisfies the curl

constraint on the magnetic field intensity in Ampere's part of Maxwell's equations.

This can be shown as follows:

V x _ = V x _,_p - V x (V¢)

and, with V x (V¢) = 0 and with "H_,p = uo'Bm_p and B,,,.p = V x "A

m I

V x H = V x (u0V x A)
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The computed ._ satisfiesEquation (3.1.2), thus oneobtains

V x "-H= "ff in fl_ir (3.1.7)

-- fix , which is defined bySimilarly, by taking the curl of the H in sub-subregion i_o,_

Equation (3.1.6), one can write the following:

v x _ = v x (-re) = o i,_ n',"°" (3.1.s)

In sub-subregion C/]"°_' the excitation current density has a zero value, hence, Equation

(3.1.8) shows that the field intensity, H, in fi_,o,_ defined by Equation (3.1.6) also

satisfies Maxwell's equations.

In addition to the above curl requirement on tile field intensity, H, the flux

density. "B, must satisfy tile zero divergence constraint, V • "B = 0. By applying this

constraint to the flux density, with "B = pot-Y, and Equation (3.1.5), one obtains the

following:

V. B = V. [_0(Hm,.p - re)]

= 27.(#oH.,_) - v. (#ore)

= v. (_,_,p) - v. (,ore)

= 27. (2 7 x ._) - 27. ($_0270) = 0 i,z fl?'" (3.1.9)

Upon substituting the vector identity, 27. (%'7 x _) = 0, into Equation (3.1.9) one

_1 •deduces the following constraint on the MSP, ¢, in _i,.

27. (#oV¢) = 0 in fl?i_ (3.1.10)

• _"_1 •Equation (3.1 10) is the governing equation for the MSP in _i,

Similarly, by applying the zero divergence constraint to the flux density, B, in

9/li_o,_, where --B = _-ff, and upon substituting for H from Equation (3.1.6), one can

write the following:

27.B = 27. [_(-V¢)] = -27. (_27¢) = 0 in fly°"
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Here,_ is the permeability tensorwhich enablesone to includeanisotropic properties
of the magnetic media, such as laminated iron cores in electrical machinery. By

multiplying both sidesof the aboveequation by (-1), one obtains

V. (_V¢) "- 0 in f_iro, (3.1.11)

Equation (3.1.11) is the governing equation for the magnetic scalar potential in sub-

f_l •subregion i_o,_

Meanwhile, in subregion, fl2, which is free from current-carrying conductors,

the field intensity, H, is defined directly in terms of the magnetic scalar potential, ¢,

as follows:

= -V¢ in f_2 (3.1.12)

Upon applying V • B = 0 in Q2, one can write the following:

V. (_X7¢) = 0 in ft2 (3.1.13)

From the above equations, Equation (3.1.10), (3.1.11), and (3.1.13), one can

see that the MSP, ¢, in fl_i_ and ironf_l , as well as in ft2, is governed by Laplace

_1 ,type equations. Therefore, one can join these separate MSP problems within =i_

f_li_°'_, as well as f_, together into one global MSP problem encompassing the entire

solution region, f_. This is accomplished by imposing the necessary field boundary

conditions on the interfaces between these subregions. The mechanics of this step in

the MVP-MSP approach are explained next.

As discussed earlier in Section 2.2 with regard to the two scalar potential

method, two types of discontinuity conditions, the discontinuity of the MSP, and

the discontinuity of the derivative of the MSP, have to be forced on certain interfaces

within the global solution region, Ft. In the case of this MVP-MSP method, the

magnetic field intensity in fl_i_ is obtained by the superposition of H_._, and (-re)

as given in Equation (3.1.5), and the magnetic field intensity in ft2 and f_'°'_ is only

from (-re) as given in Equation (3.1.6) and Equation (3.1.12). Accordingly, discon-

tinuity conditions have to be imposed at the interface between f_a and gt2, denoted

here as the surface, F12, as well as the interface between f_i, and i,o,,f_l , denoted as

the surface, F_ i.
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In order to helpthe readervisualizethesetypesof interfaces(surfaces),consider

the exampletransformer problemof Figure (3.1.1),which is illustrated here again in
Figure (3.1.2) through a cut-away picture for its current-carrying subregion,ill.

The derivation procedurediscussedin detail in section 2.2 for the two scalar
potential method is usedhereto determine the MSP discontinuity conditions on F12,

and F_ i. The derived equation which is in the same pattern as Equations (2.2.9) and

(2.2.13) shown earlier in Section 2.2, are given here in a general form as follows

B

¢_B - ¢1B = -fA _m_p.d7 on F12 and F_ i (3.1.14)

d61 d¢2 --

#' dn'-'-_- P2-_n, = p,Ifm_.,, fi, on F,2 and F_' (3.1.15)

where the point A is a reference point on the associated interface, at which the

potential discontinuity has a zero value; (¢2s -¢hB) is the MSP jump to be imposed

at the point B on that interface. Meanwhile, plHmvp" fil is the MSP derivative

discontinuity to be imposed on the associated interface.

As was stated earlier in this section, the MVP part of this MVP-MSP method

is performed in f_l under an outer boundary condition of zero MVP. The computed

normal component of the field intensity, H_v,, at the outer surface of fl_ must there-

fore be zero. In the case of the transformer problem, such a calculated flux pattern

can be drawn on a structurally symmetric cross-section of the transformer, shown in

Figure (3.1.3). On the interface between _1 and fl_ (F_2), one only needs to impose

the discontinuity of the MSP given in Equation (3.1.14). This discontinuity condition

can be rewritten on the interface, F12, as follows:

/;¢=s - ¢1_ = - -_,,,_,. d7 on F12 (3.1.16)

Again, in the above equation, point A is a reference point on the surface, F12, and the

line integral from point A to point B can be carried out through any possible path

on the surface, F12.

As noted previously, the MVP in the subregion, ill, is computed by assigning

the permeability of the iron material in sub-subregion Ft__°'* an extremely high value.

As a result of this high permeability, the computed field intensity H'_p, in fl_i, must

be perpendicular to the air-iron interfaces. Such a property of the field intensity, H,
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near to the interface between fl_ir and iro,_ _ifll , that is F 1 , can be seen in Figure (3.1.3)

of the transformer example. In this case, the tangential component of Hm,,p is zero all

over the interface and no MSP jump has to be forced on this interface• However, the

discontinuity of the MSP derivative which was previously given in Equation (3.1.15),

must be imposed on the surface, F_ i.

This MSP derivative discontinuity is restated here on F_ i, for the reader's con-

venience, as follows:

de, d¢2 -- (3.1.17)
I_o-_--_n - #2-_--_n = IloHm_v . fi = B,_pn on F_ i

• _'_1 ,In Equation (3.1 17), go is the air permeability of the nonmagnetic material in ,it.

]Z2 is the iron permeability of the iron material in f't_r°'_. Mcanwhile, ¢1 is the MSP in

air.Q1 , 82 is the MSP in Q_,on; and fi is the normal unit vector on interface F12 pointing
iron

from fl_,r to 9t 1 . Here, B,_.p,_ is the value of the MSP derivative discontinuity on

i.

Values for the discontinuity conditions expressed in Equations (3.1.16) and

(3.1.17) have to be calculated before the global MSP solution can proceed. The

values of discontinuity of the MSP derivative, p0//_p • ill, in Equation (3.1.17) can

be directly obtained from the second order MVP solution at the associated elemental

surfaces.

The method of calculation of the values of the MSP discontinuity along F12

requires further discussion. The current-carrying subregion, fll, is chosen in such

a way (see the partition absolute constraints discussed earlier in this section) that

any closed path on F12 cannot enclose net electric current within fi_. Therefore, by

magnetic Ampere's law, I,n_o,_d = _-H" all, the following closed loop integral must

hold:

-H_,_ . dl= 0 on Fl2 (3.1.18)

where, "c" can be any closed path on F12. Equation (3.1.18) indicates that the tan-

gential component of H,,,.p on F12, which is denoted here as Hm,pt, has a conservative

nature [86]. Thus, Hm,pt can be expressed as the gradient of a single valued scalar

function distributed on F12. Using the notation _¢ for this single valued scalar po-
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tential on F12, one can write the following

-v(zx¢) = on F,_ (3.1.19)

Again, H,_pt in Equation (3.1.19) is computed from the previous MVP part of this

MVP-MSP approach.

It should be pointed out that Equation (3.1.19) is the differential form of the

integral expression in Equation (3.1.16). Therefore, the single valued scalar function,

A¢_, in Equation (3.1.19) is the MSP jump distribution denoted by (¢2B - ¢1B) in

Equation (3.1.16). In order to effectively calculate this single valued MSP jump

distribution, _¢, a surface finite element analysis is introduced and carried out at

this stage throughout the surface, F12, to numerically solve Equation (3.1.19).

The functional to be minimized in this surface FE analysis, which is based on

applying the least square residual rule to Equation (3.1.19), can be written as follows:

F(A¢) = f ] V(A¢) +Hmvpt I_ da (3.1.20)

where the integration is carried out all over surface, Fa2. In this functional, H,_vpt is

obtained from the previous MVP solution, while A¢ is the unknown variable to be

solved for at every grid node on F12. At this stage, the surface grid of the original

first-order 3D FE grid on FI_ can be directly used for this FE computation. Details

of this surface FE computation will be given in Chapter 4.

These concepts and ideas regarding the combined MVP-MSP 3D-FE formula-

tion can be summarized into three major FE computation steps. These three steps

are as follows:

(1)

(2)

The 3D second-order finite element computations based on the curl-curl MVP

formulation in the current-carrying region, f_l, to calculate the curl component

of the field intensity.

The surface finite element computation on the outer surface of _1, that is F12,

which takes the resultant H'_.pt from the MVP solution in step (1) as the input

data, and calculates the MSP jump distributions, A¢, on F12, which are the

forcing function input data for the next step of computation.

(3) The first-order 3D-FE Laplace's MSP computations in the entire solution region
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to complete the task of the nonlinear magnetic field solution.

These FE computation steps, as well as the data transfer in between these steps, are

demonstrated by a flow chart shown in Figure (3.1.4). It should be emphasized again

that in the MVP stage of this MVP-MSP approach, the permeability for the iron

material in f_l should be set to an extremely high constant value. Moreover, in a

practical machine problem containing more than one excitation winding, it is often

required to compute 3D magnetic fields under various combinations of field excitation

currents in these windings. In such a case, one can perform the MVP-FE computation

in fh and the surface FE computation on I"12 with only unit excitation current in

each one of these windings singly (not simultaneously), one at a time. That is, one

repeats the same FE computations with every winding singly energized, one after

another.

The results from these computations, namely AO, Bmvpn, and the elemental

Hmvp, which are to be used as the input data for the later stage of MSP computa-

tions, are stored in a series of data files. Thus, for any given set of winding current

excitations, one is able to calculate the values of A_, Bmvp,, and the elemental H,,_p

due to this given set of excitations, by a simple linear combination of the data values

previously stored in the data files. Accordingly, the MVP-FE and the surface FE

computations mentioned above are only required to be carried out once for a given

machine design geometry. The global nonlinear 3D-MSP computations will have to

be repeatedly performed under all possible and practical combinations of current ex-

citations, as well as rotor positions. Also, the magnetic material nonlinearity, and

anisotropic permeability due to laminated iron cores in machinery, are fully included

in the MSP part of this combined MVP-MSP approach. The implementation of var-

ious types of finite element analysis mentioned above will be further discussed in

Chapter 4 of this dissertation.
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Figure (3.1.4): Flow Chart of the Combined MVP-MSP 3D-FE Solution Method
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3.2 Application of the Combined MVP-MSP

Approach to a Demonstration Example -

1.5 kVA Shell-Type Transformer

In this section, an application of the combined MVP-MSP method to a demonstration

example, namely the 1.5 kVA shell-type transformer of Chapter 2, is given. The

computed results from the MVP-MSP method will be compared with the results

from the second-order finite element MVP method whose validity was demonstrated

earlier in Chapter 2. This comparison will provide necessary evidence for the validity

of the new combined MVP-MSP approach .

The structure of the 1.5 kVA, 120/277 V, shell-type transformer which was given

earlier in Figure (2.1.3) is shown here again in Figure (3.2.1). Magnetic field compu-

tation was carried out in one octant of the transformer structure and its surrounding

space. The global solution region shown in Figure (3.2.1) is denoted as _. In order to

apply the combined MVP-MSP method, the transformer winding coil, including the

portion of the iron core laminations within the coil structure, was chosen as the MVP

subregion, fl_ (see Figure (3.2.1)). A first-order FE grid was generated by computer

which covers one octant of the entire solution space, _, as shown in Figure (3.2.2-a).

This global first-order FE grid contains 1440 tetrahedral elements and 378 nodes. The

portion of the grid which covers the MVP subregion is shown separately in Figure

(3.2.2-b).

Two Fortran program routines were generated and used to solve this transformer

problem using the new combined MVP-MSP method. The first computer program

includes a series of subroutines which generate a second-order FE grid by adding

extra nodes at the middle of each edge of the first-order tetrahedral elements in Ftl.

The same program is used to solve for the MVP within Ftx, and perform surface FE

computation to obtain the MSP jump distributions on the associated interfaces. The

second computer program is used to solve the global MSP problem on the entire

solution region, _. Again, the forcing functions, or the excitations used in the second

Fortran program are the MSP jump and MSP derivative discontinuities, which result

from the running of the first computer program.

The total excitation current in the transformer winding was kept as its earlier

value of 0.25 A as given previously in Chapter 2. The computed energy, and cor-
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respondingmagnetizing inductance are given in Table (3.2.1). The computed flux
densitiesat the grid surface,(x-y) plane, areplotted by arrows in Figure (3.2.3-a). In
this figure, the lengthsof the arrows are proportional to the magnitudesof the flux
densities,and the directionsof the arrows showthe directionsof the flux density vec-

tors. Table (3.2.2)showssometypical valuesof the flux density calculated in the iron
coreand conductor; the locationsassociatedwith the tabulated valuesare indicated
in a companionfigure, Figure (3.2.4).

Meanwhile, another global second-orderMVP FE computation for the same
transformer wascarriedout. The second-ordergrid for this computation is generated
by adding extra nodesat the middle of every edgeof the first-order FE grid which
wasusedoriginally for the combinedMVP-MSP computation. The computedenergy,

inductance, typical flux densities, as well as the flux density plots, are shown in
Tables (3.2.1) and (3.2.2), as well as Figures (3.2.3-b) and (3.2.4-b), side by side
with the results from the MVP-MSP method. Comparisonbetween the two setsof
results showsexcellentagreementbetweenthesetwo methods. Also, the calculated
inductancesof 0.742H resulting from the combinedMVP-MSP FE method, and 0.731

H resulting from the second-orderMVP FE method, are in excellentagreementwith
the measuredinductance valueof 0.737H. Thesecomparisonsgive strong evidence
of the validity of the combinedMVP-MSP FE formulation.

To study the numerical sensitivity of the MVP-MSP computed results to grid
geometryalterations, a revisedfirst-order FE grid wasgeneratedwith a grid line shift
pattern similar to those shownearlier in Figure (2.1.7) of Chapter 2. This revised

grid is given in Figure (3.2.5). The calculated result of inductance from this revised
grid, using the combinedMVP-MSP approach,is 0.742H. The computedinductance
valuein this caseis almostunchangedfrom the valuecomputedby the original grid in
Figure (3.2.2). This showsthe insensitivity of the computedglobal results to the grid
geometry,which further verifies the efficacy and reliability of the combined MVP-
MSP FE formulation. This formulation and method are thereforelessvulnerable to

grid ill-conditioning which wasdemonstratedearlier in Chapter 2 for the first-order
MVP formulation.

In this demonstration example, the effect of iron lamination on the material

reluctivity of the iron coreis full)' included. Becauseof the lamination, uu has a much

lower value than u_ and us. However, since the excitation current is low, the magnetic

saturation of the iron material is almost nonexistent, and therefore has not been taken
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Table (3.2.1): Computed Energiesand InductancesVersusTest

Valuesfor the 1.5kVA Transformer (I=0.25A)

Method of StoredEnergy Inductance
MVP (Second- 2.857x 10-3 (J) 0.731 (H)

Order Elements)
Combined 2.897x 10-3 (J) 0.742(H)
MVP-MSP

From Laboratory 2.879x 10-3 (J) 0.737(H)
Measurement
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Figure (3.2.5): First-Order FE Grid for the 1.5 kVA Transformer with
Shifted Grid Lines
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into account. Meanwhile, at higher excitations and corresponding pronounced degrees

of saturation, the nonlinearity in the magnetic field can be computed during the MSP

stage of the combined MVP-MSP method by use of the Newton-Raphson iterative

technique. Such applications involving magnetic material saturation will be given

later. Applications of this combined MVP-MSP approach to a large scale nonlinear

magnetic field problem, that is the magnetic field computation of the 14.3 kVA MLA,

will be reported in detail in later chapters.
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Chapter 4

Three-Dimensional Finite Element

Formulations for the Combined

MVP-MSP Solution Method

This chapter details the finite element formulations used in the new combined MVP-

MSP solution method. As stated in Chapter 3, this combined MVP-MSP method

consists of three consecutive FE computation steps. The first step is the MVP compu-

tation using second-order finite elements in the current-carrying subregions to obtain

the curl component of the magnetic field intensity, "Hmvp. The second step is the sur-

face FE computation performed on the outer boundary surface of the current-carrying

subregion to obtain the MSP jump distribution. Finally, the MSP computation is

performed using first-order finite elements in the entire solution region, including the

current-carrying subregions. The first and the second steps of the FE computations

are required to be carried out only once for a given machine design geometry; the

third step of the MSP-FE computation is to be performed repeatedly for each new

combination of current excitations and rotor positions. The variational problems

which underlie these three different FE computations, and the finite element equa-

tions resulting from minimization of the corresponding functionals, are given in the

following.

79



4.1 The Curl-Curl MVP

Element Formulation

Second-Order Finite

4.1.1 The Variational Problem Associated with the

Curl-Curl MVP Formulation

The variational problem associated with the curl-curl MVP boundary value problem

was detailed in the previous work by Demerdash et al [32, 33, 34]. This problem is

described here again in a compact math form (using vector operators in equations)

as a complementary effort. The pertinent energy functional, F(A), which is to be

minimized within the solution volume, V, can be written as: (see Equation (2.1.2))

F(A) = [_(H. B)- J. A]dv

and, with "H = _ (Equation (2.0.3)) and "B= V x ,'4 (Equation (2.0.5))

1 _). ,_) _-._-]dv (4.1.1)F(_) = [2
× (v X

In general, when magnetic saturation of iron material isencountered, the material

reluctivities,vx, v_, and vz of the term, _, in F(_) are functions of the flux density,

"B = V x A, hence they must be functions of ,-4.However, nonlinear magnetic

fieldproblems caused by nonlinearity of the material property are usually solved

by iterativetechnique such as the saturation iterationmethod [35]or the Newton-

Raphson method [36]in conjunction with the FE computations. Fixed reluctivities

are used in each iterationstep of the associated FE computation. Therefore, at the

stage of derivationof the variationalproblem of the curl-cu,'lMVP FE formulation,

the reluctivities,v_, v_,and vz can be treated as quantitiesindependent of the vector

potential,A.

The variationalproblem described by the functional of Equation (4.1.I)must

be solved under given magnetic fieldboundary conditions. In practicalengineering

problems, the commonly used outer boundary conditions are either:(a) the normal

component of the fluxdensity isequal to zero (B'n = 0), which means that allcal-

culated magnetic fieldsare bounded within the solution region,or (b) the tangential

component of the field intensity is equal to zero ('Ht = 0), which means the calculated
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fields are perpendicular to the boundary surface. These two types of field boundary

conditions at the outer boundary, S, of the solution volume, V, can be described
i

through the MVP, A, as follows:

B,_ = 0 or

H, = 0 or

-'A = 0 at SB (4.1.2)

(_V x_) x fi = 0 atSH (4.1.3)

where SB U SH=S, SB A SH=O, and it is the normal unit vector at the outer boundary,

SH.

According to variational principles, minimization of the above mentioned func-

tional, Equation (4.1.1) can be achieved by setting the first variation of the functional

to zero. This can be stated as follows:

_ £1 - -6F(a) = [_(VV x 5A). (V x A) +

= ,[ (VV x A)-(2 7, x _,4) + _(VV x _). (2 7 x _) - d. 6-'A]dv

fv[(VV x ,'_). (2 7 x _,_)--J. 6-'A]dv = 0 (4.1.4)

By using the following vector identity,

V. (3 x b) = (27 x 3).;-U-(27 x ;) (4.1.5)

with a correspondence oft to _'_, and b to (_K 7 x_), one can expand Equation (4.1.4)

as follows:

6F(,_) = fv{V" [6_" x (VV x A')] + [V x (VV x A')]. 6"-d- d. 6A} dv

=0 (4.1.6)

According to Gauss's theorem, for a volume V whose outer surface is a, one can

write fv(V--D)dv = _,_. dg. The first term of the volume integration in Equation

(4.1.6) can therefore be replaced by a closed surface integration. Thus one obtains
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the following:

a_ x (_v x -2). ,',d_+/v[V x (_V x X) - J-]. ,f2 dv

=0 (4.1.7)

Furthermore, by substituting (H = _ = _V x A') into the closed surface integration

of Equation (4.1.7), and by changing the position order for the terms 6A, H, and h

in the integrand of the surface integral part of Equation (4.1.7), one can re-arrange

this closed surface integral, using vector algebra, as follows:

fs --8"Ax (_Vx,'4).fids= (8_x-H).fids=- (h xH).6Ads

(4.1.8)

From Equation (4.1.2) £,_ [s_= 0 since the magnetic vector potential on SB is fixed;

and from Equation (4.1.3) "Ht [sH = 0. Thus, the closed surface integral in Equation

(4.1.8), which is on the outer boundary, S = SBUStt, must vanish when the boundary

conditions are imposed, tIence the variational, _SF(,_), in Equation (4.1.7) can be

further reduced to the following:

6F(_) = L[V x (_V x _)-7].8-Adv = 0
(4.1.9)

According to variational principles, _SF(_) stipulated by Equation (4.1.9) must vanish

for any possible variation of the MVP, that is, for any _ in Equation (4.1.9). The

necessary condition for the vanishing of 8F(A) is therefore that the term, [ V x (_V x

_)-_'], in Equation (4.1.9) must be equal to zero. Accordingly, the A subject to the

boundary conditions in Equations (4.1.2) and (4.1.3), which minimizes the functional

of Equation (4.1.1) must satisfy the curl-curl MVP equation,

m

V x (_V x A) = J

In the finite element method, one solves the curl-curl MVP boundary value

problem through numerical minimization of the energy functional, F(A), given in

Equation (4.1.1). In the case of the MVP part of the new combined MVP-MSP

method, the minimization of the functional is to be achieved by the use of second-
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order finite elements.

4.1.2 Element Equations for Second-Order Tetrahedral.

Finite Elements

Second-order tetrahedral elements, see Figure (4.1.1), are used as the building blocks

for the geometric discretization in applications of the MVP-MSP method described

herein. The second order polynomial in three dimensions consists of 10 terms. Thus

ten nodes are located at the vertices and on the edges, of the tetrahedron. Also, the

edges of the element can be of quadratic shape, which better fits the solution regions

that have curved boundaries.

In this finite element formulation, the MVP, ,4, within one element is approxi-

mated by an interpolation in between the elemental nodal MVP values, Ai's. Here,

the MVP at the i-th node of an element, Ai, can be generally stated as

m

(4.1.10)

where, fi_, _v, and fiz are the unit directional vectors; A=, Air, and Ai.. are the

directional components of the nodal MVP, _i. The interpolation polynomial of "A in

the element can be written as follows:

10 lO

k=l k=l

(4.1.11)

where :\rk is the coefficient of the interpolation, or "shape function". In second order

finite elements, these interpolation coefficients can be expressed explicitly as second-

order polynomials in local coordinate systems, which will be further explained later

in Section 4.1.3.

By substituting _" of Equation (4.1.11) into Equation (4.1.1), one can describe

the volume integration of the functional, F(A), by a summation of volume integrations

in every element. This yields the following:

NE [1
F = _ F, = _ /v, (_Vx,'_).(Vx_)-J.Aldv

e:l e=l Z
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Figure (4.1.1) A Second-Order Tetrahedral Type Element
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 Ltl £ ,0 ,0= (_v x Nk%k).(V x E Nk2_) - 7. _ 2,,] dv
e=l k=l k=l k=l

(4.1.12)

where, NE is the total number of elements in a given FE grid. Therefore, the func-

tional F(A') is approximated by a function of the nodal values of three directional

components of the MVP. The total number of the nodal value components is 3xNN

for a given FE grid with total nodes of NN.

From knowledge of the differential calculus, the minimization of the function in

Equation (4.1.12) can be achieved by setting its first derivatives with respect to these

3 x NN nodal variables to zero. Namely, one equates the following derivatives to zero:

OF = O, OF O, OF O, for i 1,2, ...NN (4.1.13)
OAix OAi_ OAiz

The differential operations stated in Equation (4.1.13) are taken for every element

one after another. For each element it yields a set of elemental equations (element

equations). Then the total NE sets of element equations can be assembled into a

global system of equations. Solving the global system of equations, one obtains the

nodal MVPs as well as the other related magnetic field quantities. Therefore, the key

to the implementation of the curl-curl MVP FE analysis using second-order elements

is the element equations. This is discussed next.

In one second-order tetrahedral element, the partial derivative term, OF/OAi_ =

0, in Equation (4.1.13) can be expanded and rearranged as follows (the number of

nodes in an element, nn, is equal to 10 in the case of second-order tetrahedral element):

OF, 0 {1
nT"l nn n_

× _(x,,_,,)]. iv x _(:vk_,,)]- 7. _(X,,_,,)}dv
k--1 k=l k=l

nn rill

fv. nn 0 _(N_,)] 7 0= {v[v × Z(x_)l.a-_, Iv× - .--k=, k=, OAix J,=a_-'(Nk_k ) }dv

=L
nn

{[_-'_ VV x (Nk'A'k)]. [V x (N_h_)]- N,-J. fix}dr
k--1

L nn . ONi ^= {[_v × (x,_,,)l.(-b-T,_,,--
k=l

o_
Oy &_)- NiJ_}dv
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_ Jfv, ON,_= _2 {-bS-z[_v
k=l

ONi[_V x (Nk_k)] .G}dv- fv, NiJ_dv× (Nk_k)].ay- 0---f

r N
ON, v ONkA _ ..=._ )ONk05,i, 0 k ,, ONkAk_)]dv

= %azAk,, - - v,
k=l

""Iv. ONi ONk c%ViONk Iv, ON, O__._k= _{[ (u. N N + v_ Oz _z )dvlmk"-- [ (" Oy )dvlAk_
k=l *

- [ " %'Oz Oz

for i = 1,2,...,nn (4.1.14)

Again, nn is the general notation for the number of total nodes in an element, in the

case of second-order tetrahedral element nn is equal to 10. Similarly, the other two

partial derivative terms in Equation (4.1.13), OF/OAiu = 0, and OF/OA,, = 0 can be

expanded and rearranged, within one elemental volume, as follows:

OFo 0 _ [VVOAi_ - OAi_ Iv, {

"ft'¢l, rt'?l rert

k=l k=l k=l

"?ln

= / {[_-V x (Nk,_k)] • [V x (N,G) ] - N,7.G}dv
Ve k=l

nyl

= £.{[E vv
k=l

ONi G __× (Nkg_)]•(-gTz
ONi
Oz &') - NiJ_}dv

= G {-b-2[vv× (N_)] .a:--
k=l

ON_v x (NkA'k)]. &,} dv _ rL N,J_ dv
Oz .z V_
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= _{-[ (u.-_z )dvlAk_+[
k=l

ONi ONk )dr] Ak_
+ u_ Ox Oz

- [fv, (V_.O_zi O_-_ff)dv]Ak,_ } - fv N, Jy dv : O

for i = 1,2,...,nn (4.1.15)

and

c9,4i_ - OAiz { _V

nrt _rt nrt

x _-'_(Nk_)]" IV x _-'_(Nk__)]- 7. y_(Nk-Ak)}dv
k=l k=l k=l

fv,, n,,,, 0 "" 0 ""= {v[v x Z:(:v,,_)]. o---2S,z[V x Z(:,,C4,,)]- 7.- Z:(:v,,Z_)}dv0,4,, k=l
k=l k=l

=/vo{[}--:_V x (ArkS'k)] • [V x (AT,G)]- Nff. a=}dv
k=l

Z nn ONi. 0Ni ,= { [_--_ VV × (,,Vk_'k)] • ('_y a._ -_xaU)-A,J,.}dv
Ve k= l

k=l

O'V"[VT x (.,'Vk_k)] .5_,}dv- Z N, Jzdv
Ox

= _ {-[Iv, (u ON, ONk )dv]A_:_ - [Iv, (r'_ON' ONk )dv]Ak_k=_ __ Oz _ Oz

fv, (9Ni (9Nk tONi cgNk )dv]Akz} - Z NiJ.,. dv = 0+ [ ('_ Ox cox +'x Oy _ ",
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for i = 1,2, ..., nn (4.1•16)

In the case of second-order tetrahedral type finite element Equations (4.1.14) through

(4.1•16) yield 30 simultaneous algebraic equations associated with 30 unknown vari-

ables, Ai,, Air, Ai,, for i=1,2,...,10. These 30 simultaneous equations are called the

element equations. Generally, the set of element equations can be written in a com-

pact matrix form as follows

._ A__ = L (4.1.17)

where, the _ is a (30x30) square matrix, commonly referred to as the element co-

efficient matrix; and the _./, vector is commonly referred to as the element forcing

function vector. The various terms in the element coefficient matrix, ._, and the

column vectors, A_._, as well as the column vector, I,, in Equation (4.1.17) can be fur-

ther expressed by means of sub-matrices and sub-column-vectors. That is, Equation

(4.1.17) can be written as follows:

_,,1 £,,2 _,,3 ...... 5,,..

&,l -&,2 ......... £2,..

• .

-._rtn,l _-nn,2 • " " • • " " • • 2_-nl2,r_n

A1

A2

A.

An_

/I

L2

/i

Lnn

(4.1.18)

where, the general term, Si.k, in the element coefficient matrix is a (3x3) sub-matrix
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//

which is given by,

_-i,k =

" ON, ONk
dv

_'Y Oz Oz.Iv.

ON, OYk
+ I u,---- dv

.Iv, Oy Oy

" ONi ONk dv
I.]z----

Jv, Oz Oy

- ON; ONk •
-- m l]y _ at,'

J V, OX

v, ONi ONk- gdo

Iv,, ONi ONk+ u, Ox Ox

0Ni 0Nk

dv

dv

[
dv-- I b'r

J_ . Oy Oz

Iv. O Ni ONk dv- u_ Oz Oz

Iv,, ONi ONi, dv

f O.Ni ONk dv",,up O, Oz

Iv ONi O.";k+ u. Oy Oy dv
e

(4.1.19)

Here, the general term, Ai, in the column vector, _, is a (3xl) sub-column-vector

given by

Ai = _ Aiy ' (4.1.20)

Aiz

and the general term, Ii in the element forcing function is a (3x 1) sub-column-vector

which can be written as follows:

I, = " NiJ_dv (4.1.21)
JV,

v NiG dv

Notice that the sub-matrix _k,i is exactly equal to the transpose of the sub-matrix

_i,k, thus the element coefficient matrix is symmetric.
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It should be pointed out here that the element equations in Equation (4.1.18-

4.1.21) are written in a general form, applicable to any type of element. This general

form also takes into account anisotropic reluctivity of the medium. As the MVP

computation in the new combined MVP-MSP method is carried out only in regions

with media of constant isotropic reluctivity, the three diagonal terms of the reluctivity

tensor have identical material reluctivity values.

4.1.3 Coordinate Transformation and Numerical

Integration

In order to calculate the element coefficient matrix and the element forcing function

vector given in Equation (4.1.18), (4.1.19), and (4.1.21), one needs to compute various

elemental volume integration terms. These integrations can be summarized as

ONi ONk dv"_V-Ou Ow

and

v NiJJ v

Here, u and w can be either x, y, or z and I4 is the volume of a given tetrahedral

element. Considering v and J_ to be known within the element, one can further

express these two types of integrations in a general form as follows:

(4.1.22)

Generally, a second-order tetrahedral type element can have irregular shape

with curved edges and curved surfaces as shown earlier in Figure (4.1.1). In this

case, it is extremely difficult to obtain an uniform pattern of an analytical algorithm

to compute the integration in Equation (4.1.22) for every element. Accordingly,

a technique which involves coordinate transformation and numerical integration is

used here to calculate these volume integrations, and consequently, to obtain the

element coefficient matrices and forcing function vectors. This technique of coordinate

transformation and numerical integration can be found in numerous text books on

the finite element method [83] [84] [85]. However, a brief summary of this technique,
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especiallyon the application to second-ordertetrahedral type elements,is givennext.

The basicideaof this techniqueis that onemapsevery tetrahedral type element,
which may haveirregular shapeunder the global coordinate system,into a fixed vol-
umeof a right tetrahedron, suchthat the integration definedby Equation (4.1.22)can
becalculated usinga uniform numericalintegration algorithm. The right tetrahedron
used in coordinate transformation in this researchis shown in Figure (4.1.2). The

locations of the ten nodesof this right tetrahedron are describedby (_, fl,"/), which

will be referred to as local coordinates.

A ten node interpolation is used to approximate a given function, u, over the

right tetrahedron by means of the local coordinate system. This interpolation can be

expressed as follows:

10

u = _ Nk(a, fl,7)uk (4.1.23)
k=l

where uk is the value of the function at k-th node, and Nk(a. d, "_) is the coefficient

for the interpolation. By using the following notations

fl = l-o-3-'r

f_=o

f4=') '
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Figure (4.1.2) Right Tetrahedral Element in Local Coordinate System
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the interpolation function, Nk, can be written as follows:

fl(2fl - 1) = (1 -a - _- "r)(1 - 2a - 23- 2_/)

f2(2f_- 1)- a(2a- 1)

f3(2f3- 1)= _(2_- 1)

f4(2f4 - 1)= "r(2"r - 1)

4f_f2 = 4a(1 - a - _ - "r)
Nk=

4L f3 = 43(1 - _ - _ - "r)

4f_f4 = 4_(1 - a - _ - "7)

4 f2f3 = 4a/3

4f_A = 4_-_

4 f3f4 = 43_

k=l

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k=lO

(4.1.o.4)
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The partial derivativesof Nk with respect to a, fl, and 7, which will be used

later when the discussion is carried on further, can be written here as follows:

1-4fl =4o+4fl+4"7-3 k= l

4f2-1 =4a-1 k=2

0 k=3

0 k=4

4(fl)-4f2 = 4(1 - 2c_ -/3- _) k = 5

-4f3 = -4,3 k = 6

-4f4 = -4_/ k = 7

4 fa = 4fl k=8

4f4 = 43, k = 9

0 k= 10

(4.1.25)
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OH

o8

l-4f_ =4a+4_÷4_-3

0

4_3-I =4_-I

0

-4]'2 = -4a

4(f,) - 4f3 = 4(1 - a - 2_ - 7)

-4f4 = -47

4f: = 4c_

0

4f4 = 47

k=l

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k=lO

(4.1.26)
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ONk

07

1-4fl =4a+4/3+47-3 k= 1

0 k=2

0 k=3

4f4 - 1 = 47 - 1 k = 4

-4f2 = -4a k = 5

-4]'3 = -43 k = 6

4(fz)-4.['4=4(1-a-_-47) k=7

0 k=8

4f2 -- 4a k - 9

4]'4 = 43 k = 10

(4.1.27)

In order to establish the mapping between the element in the global coordinate

system and the right tetrahedron in the local coordinate system, one substitutes x, y,

and z for u in Equation (4.1.23), respectively. Namely, one can write the following:

10

x = y_ Nk(a,3,'7)Xk
k=l

10

= E 3,- )yk
k=l

10

z = __, Nk(a, 3,7)zk
k=l

(4.1.28)

Equation (4.1.28) enables one to locate any given point in (x,y,z) in the global

coordinate system, whose corresponding image point in the local coordinate system

has coordinates (a,/3,7). Meanwhile, approximation of the MVP within the right

tetrahedral can be obtained by substituting the nodal MVP components for u in
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Equation (4.1.23). This yields the following:

Ax = k= ,_ ]_ (a, 13, "t) Akx I

k--1

(4.1.29)

10

Az = _ Nk(a, j3, _')Akz
k=l

Notice, in Equation (4.1.28) and (4.1.29) both geometry transformation and MVP

interpolation are described by the same set of parameters of Nk(a,13,"t). Such a

representation is called "isoparametric". Hence the elements are called isoparametric

elements, and the transformation is called isoparametric transformation. Details of

this topic can be found in references [$4] and [85].

Since Equation (4.1.2S) describes a point to point mapping between (x, y, z)

and (a,/3, "t), it implies that a, 3, and _ can be considered as functions in x, y, and

z. Thus, by chain rule differentiation, one can write the following:

ON_ ON_ Ox ON, Oy ON, Oz ]

Oa - Ox Oa + OU Oa + Oz Oo IONi ON, Ox O:\r,Oy ON, Oz
_ + + i-- 1,2,...10 (4.1.30)

03 Ox 03 Oy 03 Oz 03

ON, ON, Oz ON, Og Oi\_ Oz
_ +----+-----

0"_ Oz O't OU O_ Oz O_

Equation (4.1.30) can be further written into a compact form as

/ON,

ONi

0 N,

Oz Oy Oz

Oa Oa Oa

Oz Oy Oz

O# OZ Oa

Oz Og Oz

O'y O-t O_

T

v, (4.1.31)
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wherethe 3 x 3 matrix is a Jacobian matrix, referred to as J. By taking differential

operations on x, y, and z in Equation (3.1.28), with respect to a, /3, and 3`, and

inserting the results into this matrix, one can write the Jacobian matrix as follows:

_-_ ONk 1o ONk lo ONkk=, -gd x k=,F"-ygj ,Z"-y2z

_ ONk ao ONk xo ONk

_ ONk ao ONk lo ONk

(4.1.32)

Furthermore, by multiplying both side of Equation (4.1.31) by j-l, one obtains the

following:

(4.1.33)

It should be pointed out that each term at the right hand side of Equation (4.1.33)

is a combination of 0N,/0a, ON,/O/3, and 0N,/0V, which are the functions explicitly

given in Equation (4.1.25) through (4.1.27). Accordingly, values of ON_/Oa, ON,/O'fl,

and O.Ni/Oz, are calculable for any given set of (a, fl, 3`). Hence, the values of the

integrand in equation (4.1.22) can be determined for any given (a,/3, 3').

Meanwhile, from differential geometry formulation and nomenclature (see [85]),

the unit volume, dr, in Equation (4.1.22) can be written in the global coordinates, as

well as in the local coordinates as follows:

dv = dx dy dz = I J I da d/3 d3" (4.1.34)

where ] J [ is the determinant of the Jacobian matrix for a given element, which was

expressed in Equation (4.1.32). Thus, using the local coordinates, the integration
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given in Equation (4.1.22) can be rewritten as follows:

Int = fv, G( Ni, °N'o_, _o_ , "O-_:) dv

:£L '-°/1-°-_ G(N_'a-_u,0 o,, _o_, _)I g I do d_ d'r

where, a'(a,_,-r) = G(N,, °u' _ O__xN)0_, 0_,0= Ia_l.

Gaussian quadrature is used here to numerically integrate Equation (4.1.35). In

order to apply the standard Gaussian quadrature algorithm, which is valid only in

case that the integration volume is a cubic region centered at the origin with its edge

length equal to 2 units, Equation (4.1.35) has to be rearranged through a series of

integration variable substitutions. This substitution procedure is as follows:

(_-_-o)(l+t_) d7 = _ dtk( 1 ) Let 3' = 2 , 2

L' LI--_ i 1_
Int = da d3 G'(e_,/3,_t)d7

,SO

J.1 /o'-° i_'(1-o-J)= do d3 G'(a,/3, dtk
1 2 2

(2) Let /3 (a-,_)/l+,_) &3 = _ dti

L 1 L 1-0 /_ (1--_--_) <1--0--J)(1
Int = da d3 G'(a, ¢7, +t_))dtk

1 2 2

L 1 i-" i; (1-o)2(1-tJ)G.(cl, (1-O)(1+/j)(l-o)(1-tjl(l+t,))dtjdt kdog

1 1 _ 2 ' 4

(3) Let a=_ do= ldti2 ,

L i S; i? (1-o)2(1-tJ)G.(oL,(i_c,),i+t fl (,-<_)(i-t_)(i+t,))dtjdt kInt = do i 1 8 2 ' 4

i. 1 f._l f l (1-t,)2(1-iS) (1-t.)(l+t.1 > (1-t,i,l-tj)(i+t,)x 1 1 64 G'( 12-:_ ' 4 s ) dti dtj dtk
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(4.1.36)

At this stage, a standard Gaussian quadrature, with an order of three in each

coordinate direction, is applied to Equation (4.1.36). This yields the following:

Int = _ y_ Z 64 G*(1-+_2_'
i=1 d=l k=l

0-t,)0+t_) (1-t,)0-t_)0+tk))}

(4.1.37)

where Wi, Wj, and IVk, are the weighting factors, and ti, t j, as well as tk are the

stations, of the Gaussian quadrature. The values of these weighting factors and

stations are given in Table (4.1.1). A simpler form for Equation (4.1.37), which is the

actual formula used in the computer program, can be written as follows:

Int= _--_ _-__-_33 3 {IVi_t_W_(1 - t,)_(164 - tJ)G.(___2_ '
_=1 j=l k=l

(1-t,)(l+tj) (1-t,)(l-tT)(l÷tk))}
4 ' 8

27

=
m=l

(4.1.38)

where, IVm is the modified weighting factor, and am, tim, as well as 3',,, are the modified

stations. Values of the modified weighting factors and stations calculated from the

following equations:

(1 - ti)2(1 - t¢)
r - /"

It',_ = _I,,II,':ll k 64

C[t' rR --

l+t_

2

(1 - t,)(1 +

(1 - ti)(1 - t3)(1 + t_)

3'_ = 8

for re=l, 2,..., 27, with respect to the corresponding subscripts of i, j, and k in

Equation (4.1.38), are listed in Table (4.1.2).
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Table (4.1.1): Weighting Factors and Stations of

Gaussian Quadrature (n = 3)

II
k [t Wk xk

1 5/9 -vq-_/_

2 8/9 0

3 _/9 v5-_/5
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Table (4.1.2): Weighting Factors and Stations Used in the

Modified Form of Gaussian Quadrature

m[
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26'

27

(i,j,k) [ W_ am _m 3m

( 1, 1, 1) 0.0149728 0.1127017 0.1000000 0.0887298

( 2, 1, 1) 0.0076072 0.5000000 0.0563508 0.0500000

( 3, 1, 1) 0.0002416 0.8872983 0.0127017 0.0112702

( 1, 2, 1) 0.0134996 0.1127017 0.4436492 0.0500000

( 2, 2, 1) 0.0068587 0.5000000 0.2500000 0.0281754

( 3, 2, 1) 0.0002178 0.8872983 0.0563508 0.0063508

( 1, 3, 1) 0.0019018 0.1127017 0.7872984 0.0112702

( 2, 3, 1) 0.0009662 0.5000000 0.4436492 0.0063508

( 3, 3, 1) 0.0000307 0.887298'3 0.1000000 0.0014315

( 1, 1, 2) 0.0239564 0.1127017 0.1000000 0.3936492

( 2, 1, 2) 0.0121714 0.5000000 0.0563508 0.2218246

( 3, 1, 2) 0.0003865 0.8872983 0.0127017 0.0500000

0.0215994 0.1127017 0.4436492 0.2218246(1,2,2)

( 2, 2, 2) 0.0109739 0.5000000 0.2500000 0.1250000

( 3, 2, 2) 0.0003485 0.8872983 0.0563508 0.0281754

( 1, 3, 2) 0.0030429 011127017 0.7872984 0.0500000

( 2, 3, 2) 0.0015460 0.5000000 0.4436492 0.0281754

( 3, 3, 2) 0.0000491 0.8872983 0.1000000 0.0063508

( 1, 1, 3) 0.0149728 0.1127017 0.1000000 0.6985685

( 2, 1, 3) 0.0076072 0.5000000 0.0563508 0.3936492

( 3, 1, 3) 0.0002416 0.8872983 0.0127017 0.0887298

( 1, 2, 3) 0.0134996 0.1127017 0.4436492 0.3936492

( 2, 2, 3) 0.0068587 0.5000000 0.2500000 0.2218246

( 3, 2, 3) 0.0002178 0.8872983 0.0563508 0.0500000

( 1, 3, 3) 0.0019018 0.1127017 0.7872984 0.0887298

( 2, 3, 3) 0.0009662 0.5000000 0.4436492 0.0500000

( 3, 3, 3) 0.0000307 0.8872983 0.1000000 0.0112702
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Again, asstatedearlier in this section,G" is calculable for any given set of (a,/3,

7), hence the summation in Equation (4.1.38) is calculable. Therefore, computations

of various terms in the element coefficient matrix and forcing function vector, which

was given by Equations (4.1.18), (4.1.19), and (4.1.21), can be implemented using the

numerical integration algorithm in Equation (4.1.38) with its weighting factors and

stations given in Table (4.1.2).

4.2 The Surface Finite Element Analysis

In this section, the formulation of the surface finite element analysis involved in the

MVP-MSP approach is discussed in detail. This surface FE analysis is for computa-

tion of the MSP jump distribution on the outer surfaces of the current carrying MVP

subregions. As described in Section 3.1, this is the intermediate step which links the

prior MVP portion and the later MSP portion of the combined MVP-MSP magnetic

field solution approach.

4.2.1 Derivation of the Element Equation

To avoid possible confusion associated with the mathematical notations used here,

the MSP jump distribution, which was previously denoted by A¢ in Section 3.1, is

denoted by T throughout this section. The governing partial differential equation,

Equation (3.1.19) of Section 3.1, for this surface FE problem can be written in terms

of T as follows:

-VT = -H,_,pt on I'12 (4.2.1)

where, 1'12 is the outer surface of any current carrying MVP subregion under con-

sideration, "H,,,,,pt is the tangential component of the field intensity on F12 computed

from the previous MVP solution.

The functional associated with this surface FE analysis is chosen as

F(T) = fr IVT +-Hm_p, 12 ds (4.2.2)
12
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where ds is a differential surface area on F12. This functional is non-negative, with

its minimum equal to zero. Accordingly, the minimum (zero) of F(T) in Equation

(4.2.2) can be reached only if the integrand function, I KTT+Hm,_pt 12, is equal to zero

everywhere on F12. Apparently, this condition is equivalent to that VT + Hm,_pt =

0. Thus, the function, T, which minimizes the functional, Equation (4.2.2), must

satisfy the partial differential equation, Equation (4.2.1). Accordingly, the MSP jump

distribution can be obtained by minimizing the functional, F(T), in Equation (4.2.2).

The surface finite element grid is the outer surface grid of the 3D-FE tetrahe-

dral grid of the MVP subregion. The magnetic scalar potential jump distribution is

computed at every grid node in the surface finite element analysis. As will be seen

later, this type of nodal MSP jump value can be directly applied as a forcing function

to the later stage of the global MSP computation.

Figure (4.2.1) shows a surface triangular element with its three nodes numbered

as l, m, and n. Within this triangular element, first order interpolation is used to

approximate the variable MSP jump function, T. This interpolation can be written

as follows:

T = N_T_ + NmT_ + NnT,_ (4.2.3)

where, Art, Nm, and N,_ are interpolation coefficients, and Tt, Tin, as well as T,_ are the

nodal values of T, at the three nodes l, m, and n, respectively. In the surface finite

element problem, a triangular element can have an arbitrary orientation with respect

to the global coordinate planes. Thus, using a local coordinate system for element

analysis is more effective and convenient than directly formulating the problem in

terms of the global 3D coordinate system. Figure (4.2.1) shows the local coordinate

system, u, v, and w, for the surface FE analysis. In this system, the u-axis is chosen

along the edge lm of the triangle, the v-axis is chosen in the plane of the triangle and

in quadrature with the u-axis, and the w-axis is normal to the plane of the triangle

such that u, v, and w follow the right hand rule of the coordinate notation. Details on

the formation of the local coordinate axes, as well as the coordinate transformation

are given later in this section. Under this chosen local coordinate system, T is a

function of u and v, and the interpolation coefficients, N_, Nm, and Nn are functions

(first order polynomials) in u and v. Meanwhile, the forcing function vector Hm,,pt in
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the plane of the element can be expressed as follows:

"H',,-,vl = H,,a,, + H,,fi,, (4.2.4)

where fi,, and fi,, are unit vectors in the u and v directions, respectively. Here, H,_

and H,_ are directional components of H,_.pt expressed in terms of the chosen local

coordinate system.

The global integral of the functional in Equation (4.'2..2) can be expanded as a

summation of a series of integrations on each element. Namely, one can write the

following:

NE

f(T)=fr IXTZ+_,,op, I2 da=__,/s IVZ+_,,_ptl 2 ds (4.2.5)
12 e=l •

where S_ is an elemental surface area and ArE is the total number of the surface

elements. Furthermore, using the local coordinate system for each element, and

Equation (4.2.4), one can rewrite the functional as follows:

NE

F(T)= )-_fs I VT(u'v)+-Hm"P*(u'v)12 dudv
e=l •

_ fs OT )2 (cOT,=x ,[(-_u + H_ + -_v + H_)21 dudv
(4.2.6)

At this stage, Equation (4.2.3) is substituted for T in Equation (4.2.6). The deriva-

tives of this functional with respect to each nodal variable must be equated to zero to

meet the requirement of functional minimization. This procedure leads to a general

form for the element equations of this surface FE analysis. The derivation is detailed

as follows:

O._, fs { ( OT aT-_u + Hu)2 + ("_v + H_)2}dudv

= _. {[ (N,T_ + NmTm + NnT, O + H_,] _

+ [_v(N,T, + NmT_ + 3_Tn) + H.]2}dudv
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r 0 ONl O._.m_ 07.,,._

= }so{_, [--_T,+ =0--j__.+ --52-..+ Hd2

00Nz ON., ON,, T,,+ 8Y,,[-gb--_r' + o-7 T., + _ + #d_}d_,dv

= fs{2ONi[ON_r_ ON"7 ON,r.N-_-gJ +--57 '+ o,, +Hd

&V:DN 0:'_ ON,
+ _,--'[--'7, + --:Tin + ---r. + Hd}a_,a_

" Ov Ov ' Ov Ov

=,_{ {(ox, o._5 ox, oX, lr_+ ( + )r,_
".Is, Ou Ou + Ov Ov Ou Ou Ov Ov

ONi ON,, ONi 3N_ ONi H ¥_-_+ ( au &, + ov _ )T" + _ _ + tI_,}&dv

=0 fori=l, m, n (4.o_.7)

Because of the first order nature of the interpolation function in these triangular

elements, the derivative terms in Equation (4.2.7), ONi/Ou, ONi/Ov, for i = l, rn, n,

are constants in each element. Thus, from Equation (4.2.7), one obtains the following:

0Ni 0N,_
&\_ ON_ ON, ON_)TL + 2x( +

2A(_uu Ou + Ov Ov Ou Ou

ON, &% ON, ONn)T,,
+2A(0u Ou + Ov Ov

0 Ni Hu 0 Ni= -2_(-g£ + -5-b--_) /or_ = z,m,n (4.z.s)

where, A is the area of the triangular element. This element equation can be further

expressed in matrix form as follows:

/T_ G

_ Tm '=' C,, (

T,_ C,]

(4.2.9)

Su Sz_ Sz_

S.. Snm S,_,_
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where

S. = 2A(0N_ 0Nz 0N_ 0N_
Ou Ou + Ov Ov )

S"`"` = 2A(0N"` ON., ON.. ON"`
Ou Ou + Ov Ov )

_A(O,V O:q O:q ON.S,_. =. Ou Ou + Ov Ov )

ONt ON"` ONt ON,.SI"`=S..=2A(o Ou + Ov Ov )

Ou Ou + Ov Ov )

0:\"` ONn ON,_ ON_

S"`,_=Sn"`=2A( Ou Ou + Ov Ov )

and

0Nz. 0Nt H_)c, = -2a(-G-._ +

N ON,_ l
C"` = -2A(_-u_ Hu + _ 1,_,)

0N,c. = -2_( H. + -G-v H_)

By repeating Equation (4.2.9) for every surface element, and assembling these element

equations, one obtains the global system of equations for the surface 2D-FE analysis.

Solving the global equations, one accomplishes the computation of the MSP jump

distribution T, or A 0 as denoted in Section 3.1.

As discussed in Section 3.1, a reference point is needed for the relative MSP

jump distribution. In this case, one needs to enforce a zero value of A¢ on one grid

node. This node can be arbitrarily chosen from the surface finite element grid.
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4.2.2 The Element Equation Under a Local Coordinate

System

The element coefficient matrix and forcing function vector in Equation (4.2.9) are

given in terms of the local coordinate system shown in Figure (4.2.1). These terms

are combinations of partial derivatives of element interpolation coefficients with re-

spect to the local coordinates, u, and v. To obtain the element interpolation co-

efficients (shape functions) and consequently their derivatives, one needs to know

the local coordinates of each triangular vertex. This is done by a special coordinate

transformation described next.

For a given triangular element, see Figure (4.2.1), the local coordinate axis,

u, is directed along the elemental side, lrn. The unit directional vector, 6_,, can be

therefore defined as follows:

xml + Y,, + "_,_l xm_ + +Yrnl ZmlXrnl "4- Yml q- "ml

(4.2.10)

where, xmt = xm - xt, y,ng = ym - yt, zml = Zm -- Zt, etc.

The w-direction, which is normal to the plane of the triangle, can be obtained

by a cross-product of any two vectors in that plane. One of these vectors is chosen as

the vector from node I to node m, the other vector is chosen as the vector from node l

to node n. From vector algebra, the cross-product of the two vectors has a magnitude

(length) equal to twice of the triangular area, A. Thus the unit directional vector _

can be written as follows:

&_ flu fib

Xm -- Xl Ym -- Yl Zm -- Zl

Xn -- Xl Yn -- Yl Zn -- Zl

yralZnl -- ZmlYnl A ZmlXnl _ XmlZnl
ax + ay +

2A 2A

XrnlYnl -- YmlXnl ^
az (4.2.11)

2A
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where A is the area of the triangular element, and 2A can be calculated using the

following equation:

Finally, the v-axis can be obtained as the cross-product of fiw and 5_. That is ,

one can write the following:

hv = h_ X 5_,

2_. / 2 2 .2x,_t + +Yml ~mlV

fi= flu h*

(YmlZnl (ZmlXnl (XmlYnl

- zma,.) --XmZZ,.) --VmlX,")

Xml Yml Zml

Zmt(Z_tXnt -- X_tZ,_t) -- y_l(xmty,_l -- ymlx,_t).
ax

Yml + Zml

+
z,,,l(xma,. - y..z,_t) - z,,,l(ym_z,,l -- z_a,_l).

ay

Yml + _ml

+ yml(ymlznt -- zmty,_l) -- xm1(Z,-nlXnt -- XmtZnl)Aa= (4.2.12)

,, + Yml + _ml

The three unit vectors described above can be written in a general form as follows:

fi_, = u=h_ + uua u + u=fi=

5_ = v=6= + vvh _ + v=6=

h,_ = w.h_ + wuh u + w.h=

(4.2.13)

where, u=, uy, ..., were detailed in Equations (4.2.10) through (4.2.12). Physically,

each of these terms is tile cosine of the angle between a local coordinate axis and a

global coordinate axis.
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Having Equations (4.2.10) through (4.2.13), the local coordinates of the triangu-

lar vertices, ui and vi, can be calculated by the following coordinate transformation:

Ux

Uy U z

UV Vz

Xi -- Xl

Yi - Yt

Zi -- Zl

fori = l, m, n (4.2.14)

The local coordinate wi, for i = 1, rn, n has not been included in the above equa-

tion. This is because the computation of the element matrix and forcing function

is a two-dimensional process under the chosen local coordinate system, hence the

w-coordinates are not needed.

m

Meanwhile, consider that H_ and Hv are the projections of H,.,,_pt on the u and

v axes respectively, one can calculate the values of Hu and Hv using the following:

}H_, = H mvpt . fi,,

Hv = Hm,.,pt ft,

The remaining work on the element matrix and forcing function vector is straight-

forward. The element shape functions, as well as their derivatives, of the first order

triangular elements can be adopted from well established two-dimensional finite ele-

ment work. The following is the formulation:

1

Nt = _(pl + qlu + r_v)

1

N., = 9"9"_(pm q- qmu + rmv)

1

A_ = -_.._(p,., + q,_u + r_,v)

(4.2.16)

111



where

ONt qt ONl rt
- 2a' = V£'

ONto qm ON_ rm

Ou 2A ' Ov 2A'

ON_ q. ON. r.

Ou - 2A' Ov - 2A'

(4.2.17)

Pt = Um Un _ Un l)m _

Pm = 72nYl -- UIUn_

Pl = IliUm _ UmUl_

ql = Vm -- Vn ,

qm : Vn -- Vl,

qn = UI -- ?3rn ,

rl :- tin -- ltrn

rrn "- III -- Un

rn = Urn _ Ul

(4.2.18)

Finally, by substituting Equations (4.2.16) and (4.2.17) into Equation (4.2.9),

the element equation can be written as follows:

1

2A

qtqz + rlrt qlq._ + rtrm q_% -4- rlr_

qmql + rmrt q._qm + rmrm qm% + rmrn

%qt + r,_rt qnq_ + rnrm q,_q,, + rnrn

Tz

T_

I -qtH_ - rtH_

= - qm H_ - rm H,

-q_H_ - r=H.

(4.2.19)

Equations (4.2.18) and (4.2.19), in conjunction with the coordinate transformation

described in Equations (4.2.10) through (4.2.14), complete the formulation of the

element equation of the surface finite element analysis. The MSP jump distribution

is computed by this surface finite element procedure. Again, as stated earlier in

Section 3.1, this computed MSP jump distribution will be the main forcing fur_ion

in the MSP portion of the combined MVP-MSP approach. Implemo,_t_;nn of the

MSP-FE formulation will be discussed next.
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4.3 Magnetic Scalar Potential 3D-FE

Formulation Using First Order Elements

The 3D magnetic scalar potential finite element formulation of the MVP-MSP ap-

proach is discussed in this section. The solution region of the MSP part of this ap-

proach is the entire magnetic field solution volume. This region includes the current-

free subregion as well as the current carrying MVP subregion. On the interfaces

between these two subregions, the MSP jump distribution has to be enforced to guar-

antee the continuity of the tangential component of the field intensity along these

interface boundaries. Meanwhile, on the interfaces between the air and iron within

the MVP subregion, the discontinuity of the normal derivative of the MSP has to

be enforced to guarantee the continuity of the normal component of the flux density.

The physical aspects of these two discontinuity conditions were discussed in Chap-

ter 2 and Chapter 3 of this dissertation. The enforcement of these discontinuities is

carried out within the confines of the MSP FE formulations.

In general, magnetic field problems in electric machinery can be nonlinear due to

magnetic saturation in the iron material, and these problems can contain anisotropies

due to machine iron core laminations. Such features can be fully included within the

MSP-FE computation stage in the combined MVP-MSP approach subject of this

research. The procedure of the MSP-FE problem with material magnetic anisotropy

is given in Section 4.3.1. The enforcement of the MSP discontinuity conditions, which

is established through the element equation of the MSP-FE analysis, is expressed in

Section 4.3.2. The MSP field problem involving material magnetic nonlinearity will

be discussed later-on in Chapter 5.

4.3.1 The MSP FE Problem with Material Anisotropy

In the MSP problem, the governing partial differential equation, which was discussed

in Section 3.1, can be rewritten here for the reader's convenience as follows:

V. (_V¢)=0 (4.3.1)
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Generally, the outer boundary conditions of the magnetic fields in the MSP problem

associated with electric machines can be expressed as

Ht = O, or 4) = Constant, at SH (4.3.2)

and

0¢
B,, = O, or On - 0, at SB (4.3.3)

where SB U SH constitutes the entire outer boundary surface of the solution volume.

Equations (4.3.1) through (4.3.3) specify the MSP problem over the solution region

with a single type of medium, in which B, H, and _ are continuous everywhere.

The condition of Equation (4.3.2) can be enforced by assigning a constant potential

value to the nodes on the boundary SH. That is, the nodes on the outer surface SH

are treated as known nodes in the FE formulation. While the boundary condition

of Equation (4.3.3), as will be seen, is the natural boundary condition of the FE

formulation.

The element equation of the MSP-FE analysis can be obtained through either

a variational method, or the method of weighted residual with Galerkin criterion

[84]. Both methods yield the same finite element formulation. The derivation of the

element equation using the method of weighted residual is used here to develop the

MSP-FE formulation.

In each first order tetrahedral element, the scalar potential 4) can be approxi-

mated by an interpolation between its nodal potential values. This interpolation can

be written as

4) = _ Nk4)k (4.3.4)
k=l

where Nk is a first order polynomial in terms of the coordinate variables, commonly

referred to as a shape function. The subscripts in Equation (4.3.4) are numbered

locally in each element. Notice, an important property of the shape function Nk is

that it equals one at node k, zero at all other nodes.
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Applying Equation (4.3.4) to everyelement,with the nodesnumberedglobally,
one canwrite the expressionfor ¢ over the wholesolution regionas follows:

NN

¢ = _ NkCk (4.3.5)
k=l

where NN is the number of total grid nodes.

Since ¢ in Equation (4.3.5) is an approximation of piecewise continuous polyno-

mials to the true solution, its substitution into the governing partial differential equa-

tion, Equation (4.3.1), will result in a residual. One then seeks the "best" solution,

by minimizing the residual throughout the whole solution volume. This minimization

is done by attempting to force a series of weighted integrals of residuals to zero. In

the Galerkin method (the method of weighted residual with Galerkin criterion), the

element shape functions, Ni, are chosen as the weighting functions to these residual

integrals. Thus for each Ni, one can write the following:

NN

fv Ni V ._(V _ NkCk) dv = 0 (4.3.6)
k=l

This constitutes a set of algebraic equations from which the nodal MSP values, ¢1,

¢2, ... can be obtained. Because the nodal MSP on SH is known, Equation (4.3.2),

the number of the nodal MSP variables to be solved for using Equation (4.3.6) is less

than the total number of grid nodes, NN. In this case, in order to have a nonsingular

system of algebraic equations, one only sets Equation (4.3.6) by use of the weighting

functions Ni associated with the unknown nodes. Therefore, the total number of the

algebraic equations resulting from Equation (4.3.6) is equal to the number of the total

unknown nodes in the MSP-FE grid.

By applying the vector identity V. (f'ff) = f(V. T) + T. (V f), with a corre-

spondence of f to Ni, and "ff to _V¢, one can expand Equation (4.3.6) as follows:

NN

Iv Ni V. _(V _ YkCk) dv
k=l

= - L VN,. [(_V

NN NN

_Nk¢_)ldv+ fvV.[N,_(V_Nk¢_l]dv=O (4.3.7/
k=l k=l
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Notice that, by Gauss'stheorem; fv(V ."D)dv = _s-D. dg, the second volume integra-

tion term in Equation (4.3.7) can be replaced by a closed surface integral. Thus, one

obtains the following:

NN NN

- fv VN,. [_(V Z NkCk)ld" + fS Ni(_V Y_ NkCk). rids = 0
k=l k=l

where S is the outer boundary of the solution volume. Multiplying the above equation

by (-1), and making use of the definition that V¢-fi = O¢/On, yields the following:

IV N N /S O0VN_ • [_(V _--_ gkck)]dv- Nil_,_--d-_nds=O (4.3.8)
k=l

where p_, is the permeability along the normal h direction to the surface.

Notice, Equation (4.3.8) is written for every unknown node, thus the values of

Ni at the nodes on the surface SH, which is the portion of the outer boundary with the

known nodes, are always equal to zero. Hence, the surface integral term in Equation

(4.3.8) appears only on the surface SB, which is the portion of the outer boundary

with unknown nodes. It is obvious that substituting the boundary condition on SB

of Equation (4.3.3) into Equation (4.3.8) eliminates the surface integral from the

equation. Therefore, the MSP-FE discretization equation can finally be written as

NN

Iv VN,. [_(V _ Nk¢)]dv = 0 (4.3.9)
k=l

Again, this equation has already included the outer boundary condition of Equation

(4.3.3). In other words, the outer boundary condition in Equation (4.3.3) is inherently

satisfied, thus it is a natural boundary condition.

Here, it should be pointed out that Equation (4.3.9) is also valid for problems

involving more than one type of material. In this case, B, H, and _ are no longer

continuous throughout the whole solution region, thus Equation (4.3.8) has to be

simultaneously applied to each single-medium subregion of the problem. On the in-

terface boundaries between these subregions, and in the absence of surface currents,

¢ must be continuous. This guarantees the continuity of the tangential components

of the field intensity across the interface boundaries. Meanwhile, a surface integral

similar to that in Equation (4.3.8) has to be taken into account on the outer bound-

aries of each single-medium subregion. Hence, on the interface boundaries in between
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different material regions, the surface integral term emergeson both sides. Notice

that Bn = -#04)�On on both sides of the interface boundary must be equal for the

reason that Bn must be continuous across such a boundary. Also, notice that the

surface integrals from each side are carrying opposite signs when one uses the same

normal direction, fi, in their integral expressions. The contributions of the surface in-

tegrals from the two sides to the global system therefore cancelled each other. Hence,

the surface integral of Equation (4.3.8) on the interface boundary of the multi-media

problem is not needed. However, the total contribution of this surface integral term

may not be zero when a discontinuity in ILO4)/On on the interface boundary needs

to be enforced. This condition may happen in the MSP portion of the combined

MVP-MSP approach, and will be further discussed later in this section.

The volume integral in Equation (4.3.9) can be expressed by a summation of

a series integrals in every tetrahedral element. This allows one to rewrite Equation

(4.3.9) into the following form:

NE{ . NN

: (4.3.10)

where I_ is the volume of a given tetrahedral element, NE is the total number of

tetrahedral elements. Notice, within a given tetrahedral element, only four shape

functions, which are those shape functions related to the four nodes of that element,

have non-zero values. Thus, the contribution to the global system from one of the

elemental volume integrals in Equation (4.3.10) can be written as follows:

4

VNi.[_(V_-'_A_¢k)]dv=O fori = 1, 2, 3, 4 (4.3.11)
k--1

Equation (4.3.11) is the element equation of the MSP-FE analysis.

The above element equation can be further expanded and rearranged as follows

4 4

Iv, VN, . E N chk)]dv = Iv, VN, . dv
k--I k=l

k=l

117



-_t 0Ni 0Nk cgNi c_gNk cgN, aNk

----0 for{ = I, 2, 3, 4 (4.3.12)

For first order tetrahedral elements, the derivatives of the shape functions are con-

stants, hence they can be taken outside the integral. Accordingly, the element equa-

tions can be written into a compact matrix form as follows:

Sll 812 813 814

821 ,622 823 £24

831 $32 833 $34

S41 S42 843 844

IoI¢_ 0
(4.3.13)

where

, ON, ONk

sik = _t1_ -87 Ox

and

0 Ni oArk

+ Pz Oz Oz ) V°l

i,bl = Volume of a given Tetrahedral Element

The calculation of the derivatives of the shape functions in Equation (4.3.13) is

adopted from previous work on the 3D magnetic vector potential formulation by

Demerdash et al [33]. For completeness these derivative terms are listed in Appendix

(B) of this dissertation. Next, the forcing function part of the element equation

stemming from the enforcement of the interface boundary conditions is discussed.

4.3.2 The FE Formulation Including the MSP

Discontinuities at the Interface Boundary

The two types of MSP discontinuity conditions, the MSP jump, A¢, on the outer

boundary of the current-carrying subregion, and the discontinuity of #O¢/On, on the
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air-iron interfacewithin this MVP subregion,canbe includedin theelementequations

of the MSP-FE analysis. Again, as stated in the previoussections, A¢ is obtained

from the MVP computed results using the surface FE procedure. Also, the t_O¢/On

distribution is obtained from the same MVP computed results.

Consider the two adjacent tetrahedral elements located on both sides of the

outer boundary of the MVP subregion, Figure (4.3.1). Because of the MSP jump dis-

tribution, the MSPs on each side of the interface between the two elements may have

different values. The difference is A¢. In order to avoid increasing the total number

of unknown variables in the FE computation, the scalar potential value computed at

the 3D FE grid node is considered to be the MSP value on the side of the current-free

region. Consequently, on the side of the MVP subregion, the MSP at node i, ¢i, can

be expressed as follows:

"rt
(4.3.14)

where, ¢_oe, is the nodal MSP at the opposite side of the MSP subregion computed

directly from the 3D-FE computation, and A¢i is the MSP jump value at the node,

i. Accordingly, the element equation (Equation (4.3.13)) for the element on the side

of the MVP subregion becomes

SII S12 S13 S14

821 $22 $23 $24

$31 S32 $33 $34

841 S42 $43 844

cnode -- '--_ _911

CnOd,_ '-X¢33

cnode -- A¢44

=0
(4.3.15)

For the grid node which is not on the outer boundary of the MVP subregion, the

associated term, A¢, in Equation (4.3.15), should assume a zero value. For instance,

A¢4 for the element in Figure (4.3.1) is zero.

By moving A¢'s to the right hand side of Equation (4.3.15), one obtains the

119



The Element at the Sideof the
Current-Carrying MVP Subregion

4

The Interface Betweenthe
MVP Subregionand the
Current-FreeSubregion

The Element at the Sideof
the Current-FreeSubregion
(¢, =

Figure (4.3.1) Two Adjacent Tetrahedral Elements on Each Side of

the Outer Surface of the MVP Subregion
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following

Sll S12 S13 S14

821 822 S23 $24

$31 S32 $33 $34

$41 $42 $43 $44

(_node I

1

Anode
"I"2

¢_ode

(_node
4

SI1 812 813 814

821 822 823 824

,331 832 833 834

841 842 843 844

A¢3

A¢4

(4.3.16)

Equation (4.3.16) is the element equation for the elements on the side of the MVP

subregion. It can be seen that the enforcement of the MSP jump distribution results

in the forcing function term at the right hand side of the element equation. Equation

(4.3.16) can be easily extended to use for all elements in the MSP solution region.

This application is done by assigning zero values for A¢'s at all interior FE nodes of

the MVP subregion, and at all nodes in the current-free subregion. This extension

has greatly simplified the computer program structure of the MSP-FE computation.

Another interface boundary condition, which has to be enforced through the

FE formulation, is the discontinuity of _O¢/On on the air-iron interface within the

MVP subregion. Figure (4.3.2) shows a case with two adjacent elements located on

each side of the air-iron interface. From the discussion in Chapter 2 and Chapter 3,

this discontinuity can be written as

0¢1 0¢5
/_°"_n - ""'-_n = Bmvpn (4.3.17)

where, ¢1 is the MSP on the air side of the interface boundary; ¢_ is the MSP on

the iron side of that boundary; n is the normal direction unit vector on that interface

boundary pointing from the air side to the iron side; #n is the permeability of the iron

region along the n-direction; and Bm,pn is the normal component of the flux density

computed from the MVP part of this combined MVP-MSP approach.

As discussed earlier in this section, in the case of multi-media problems, Equa-

tion (4.3.8) should be applied separately to the air and iron subregions, and the

magnetic field boundary condition needs to be examined on the interface between the
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Current-Carrying MVP Subregion

The Elemeni at

the Side of Iron

/
The Element at

the Side of Air

/

The Interface between the

Iron Side and the Air Side

Figure (4.3.2) Two Adjacent Tetrahedral Elements on Each Side of
the Air-Iron Interface Within the MVP Subregion
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air and iron. Thus, by applying Equation (4.3.8) in both subregions,the resultant
contribution to the global systemcan bewritten as follows:

fv VNi. [_(V _ Ck)]dv -(fs N{po ds - Nile. )ds = 0 (4.3.18)
k=l

where S is the interface between the air and iron, and its normal direction h points

from the side of air to the side of iron. By substituting the interface boundary

condition of Equation (4.3.17) into the surface integral terms in Equation (4.3.18),

the total contribution of the surface integrals to the global system can be written as

1\ ipo-_n ds fs ds

= .fs Ni(l't°O-_O--lon- It' ._ff__n) ds0¢2

= fs NiB=vp,., ds (4.3.19)

This leads one to rewrite Equation (4.3.18) into the following form:

NN

fv VNi. _(V Z Ck)] dv = fs N, Bm_p,_ ds (4.3.20)
k=l

Again, the surface integral term in Equation (4.3.20) is carried out at the outward

surface of the air side with its normal direction pointing from the air to the iron. It

is obvious that this surface intergal becomes part of the forcing function in the MSP

finite element analysis.

In a given tetrahedral element, the surface integral term in Equation (4.3.19)

may occur on any one of its four surface triangles. Since one surface triangle contains

three nodes, the forcing function term due to the surface integral on that triangle

should be contributed to the three element equations corresponding to the three

related nodes. In order to include this into a general form of element equation, a

fixed connection pattern of elemental nodes and elemental surface triangles is used

for every element. This connection pattern is shown in Figure (4.3.3). Using this

connection pattern, with the notations si for the i-th surface triangle in Figure (4.3.3),
i

and B_vm, for the normal component of the flux density computed from the MVP at

the i-th surface triangle, the associated forcing function of the element equation can

123



SurfaceTriangle #3

4 Node: 2, 3, 4

Surface Triangle #4 _ /

N°de: 3'1;4",_ ii 2_

1 _ / Node: 1, 2, 4

Surface Triangle #I

Node: 1, 3. 2

Figure (4.3.3) Connection Pattern of Elemental Nodes and Surface Triangles
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be written in a vector form, Pc, as follows:

P_

plIP2

P3

P4

f,, NxBlm_P"ds + f,2

f_l N2B:_,,,,ds + f,2 _h2B,_,m_ ds + N2 B,,,,,p, ds
3

3 ]. ,N3B_,p,,ds + N3Bm_p,_ds
4

N4B_p,, ds + N4Bmvp, ds
4

The integral terms in the above column vector can be further simplified using the
i

formulation of the area integration [84]. Here, the Bin,p,, terms are constants, so they

can be taken outside of the surface integrals. The area integrations used here are in

the following form:

f Nkds Ai
, 3

where Ai is the area of the i-th surface triangle of the tetrahedral element. Hence,

the above vector form of the forcing function can be rewritten as follows:

Pe

plIP2

P3

P4

(4.3.21)

Finally, adding the above vector to the right hand side of Equation (4.3.16)

leads to the complete element equation enforcing the MSP discontinuities across the
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elementalsurfaces,which can now be written asfollows:

'911 312 S13 -,_14

$21 822 323 824

$31 332 333 834

$41 $42 $43 $44

,ro e,_node
'e'2

(_r_ode

(gr_°de

$II

$21

$31

$41

$12 813

$22 $23

$32 $33

$42 $43

814

324

334

$44

£x_3

£x_4

+

IJ
3

Blp A1 + 2 4Bmvp,_ /k 2 -{- Brnvpn Z2X4

Blvpn/kl -1-B_.pn_2 + B3mvpn/k3

1 3 4 ,
B,,,vp,_Al + B,_p,_A3 + Bmvp,_A4

2 , 3 4 ,
Brnvpn'-_2 -t- BmvpnA.3 + Bmvpn&_4

(4.3.22)

This is also the general form for the tetrahedral element formulation of the MSP

portion of the MVP-MSP FE approach at hand. In this form the MSP discontinuity

conditions become the forcing function of the element equation. The computation

of the terms in the coefficient matrix was detailed in Equation (4.3.13). When this

form is used for the elements within the iron portion of the MVP subregion, the

Bm_pn terms in the equation must assume zero values. When this form is used for the

elements in the current free subregion, the whole forcing function part at the right

hand side of the element equation must equal zero.
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Chapter 5

Newton-Raphson Method in

Nonlinear MSP Problems

In general, magnetic field problems in electrical devices and machines are of nonlinear

nature due to magnetic saturation in ferromagnetic materials used in the construction

of the cores of these machines. The main magnetic flux path of the MLA at hand

consists of the stator armature iron core laminations, rotor shaft and poles, as well

as the end-bells and casing. The magnetic saturation in these iron portions has

substantial effects on the global and local magnetic field distributions in such MLAs.

Also, the magnetic saturation affects various MLA machine parameters such as the

winding inductances, the required field excitations, and the induced armature emfs

under different machine operating conditions. Therefore, the nonlinearity problem

related to the magnetic material saturation has to be taken rigorously into full account

in computation of magnetic fields in such MLAs. This is in addition to the fact that

the magnetic properties of these iron portions can be anisotropic due to the laminated

nature of portions of the iron core laminations.

In the combined MVP-MSP 3D finite element method, the magnetic anisotropy

and nonlinearity related to the ferromagnetic materials can be included within the

MSP part of the solution method. As was discussed in Section 4.3, the resultant

global system of equations of the 3D-FE MSP analysis can be written as follows:

•_¢=s. (b_2¢)+P (5.0.1)

where, _ is a coefficient matrix, _¢ is a column vector containing the unknown MSPs,

(A..._¢) is a column vector containing the MSP jumps at the FE grid nodes, and P

is a column vector containing the terms resulting from the enforcement of the MSP
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derivative discontinuity. The associatedelementequationsweredetailed in Equations

(4.3.13)and (4.3.22) of Section4.3. Notice that the coefficient matrix, 5', contains

the material permeability terms,/_,, #u, and/t,, see Equation (4.3.13). These perme-

ability values within the iron cores depend on the magnitude of the field intensity (or

flux density), consequently they are functions of the unknown MSP variable, ¢. In

such a case, the coefficient matrix, S in Equation (5.0.1) becomes a function of the

unknown MSP variable, ¢, hence, (5.0.1) is a set of nonlinear equations.

In solving this nonlinear problem, a Newton-Raphson iterative method is used.

The associated 3D MSP finite element formulation in conjunction with the Newton-

Raphson procedure is detailed in this chapter. Also, relaxation factors applied in the

process of updating the permeability derivative terms, O#z/OHz, and Ol_z/OCk, were

used in the Newton-Raphson iterative procedure, which successfully improved the

quality of convergence of the method for the nonlinear MSP problem. Application of

these relaxation factors to the MSP-FE formulation is discussed in Section 5.2. In this

chapter, the notation _¢ refers to the nodal MSP values in the 3D-FE global system

of equations. This (5 represents the actual MSPs at the nodes within the current

free subregion. Meanwhile, the actual MSPs at the nodes within the current-carrying

MVP subregion are expressed by (_¢- A___¢0),where A____is the MSP jump at the nodes

on the outer surface of the MVP subregion.

5.1 The Newton-Raphson Iterative Procedure

for the 3D-FE MSP Problem

In order to derive the Newton-Raphson iterative algorithm, consider the following

column vector, F(£):

F(_¢)= _. _ - _. (____)- £

= _" (__- ___2)-£ (5.1.1)

where if_, ¢, A_.._¢,and P are the same as those used in Equation (5.0.1). If one

substitutes a column vector, _¢, equal to the exact solution of Equation (5.0.1) into

Equation (5.1.1), F(_¢) in Equation (.5.1.1) becomes a null (zero) vector.
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Using a curtailed (truncated) Taylor expansionfor £(_8) with respect to _8,at

_-o,one can write the following:

F(¢) = F(_) + J(_). (_8- _) (5.1.2)

where J is a global Jacobian matrix. The associated element matrix form of this

Jacobian matrix can be written as follows:

JC

Of, Of_ Of, Of,

041 042 04)3 04)4
Of 2 Of 2 Of 2 Of 2

0¢1 0¢_ 0¢3 0¢4
05 05 05 O.h
0%-; o%-; -o¢_ o__
o.h oA of_ oA
o¢)---_,o02 o¢3 o¢_

(5.1.3)

Assume a case in which 0_o is a column vector that is very close to the exact solution

of Equation (5.0.1), _8. The resulting F from the above Taylor expansion is expected

to be nearly the exact F at O. That is, based on Equation (5.1.1) the left hand side

of Equation (5.1.2) becomes a null column vector. Thus, one can rewrite Equation

(5.1.2) as follows:

2(_). (_8-_) = -F(_) (5.1.4)

or

_(_). _¢ = -F(_) (5.1.5)

where

6__¢_= ¢ - 8_0 and ¢ = -8o + 6._¢_

In this case, one can solve Equation (5.1.5) for 6.._, and use (__ = _-o + -_¢) to obtain

the exact solution of the nonlinear Equation (5.0.1).

However, if _-o in Equation (5.1.5) is not close enough to the exact solution of

Equation (5.0.1), solving Equation (5.1.5) may not result in a solution which exactly

satisfies Equation (5.0.1). In this case, one can use the computed _8 as an updated

129



_-oto set up a new linear systemof equationsasgiven in Equation (5.1.5). One then
solvesthis new linear systemof equationsto obtain a new set of nodal MSPs which
is a better estimate than the previousone (closerto the exact solution of Equation
(5.0.1)). This processcanbe repeatedlyuseduntil a satisfactorysolution is obtained.

The iterative method describedaboveis called the Newton-Raphsoniterative
procedure. The theory of the Newton-Raphsonmethod can be found in numerous

text books [87]. The convergenceof this iteration canbe tested by checkingwhether
the norm of _.Fin Equation (5.1.2)approacheszeroor an insignificant number.

The Newton-Raphsonprocedureusedin this researchfor solving the nonlinear
MSP problem canbe mathematically expressedasfollows:

for/= 0, 1,2,... (5.1.6)

where 6i is the MSP nodal value computed from the previousstep of iteration, ,50 i

is the variable to be solved in the i-th step of the Newton-Raphson iteration, and

__i+1 is the updated MSP nodal value after the i-th iteration. Here, 6¢_._._'should not be

confused with A_.._which is the MSP jump computed from the surface FE part of this

combined MVP-MSP method. The initial guess, 0_o, can be chosen as a zero column

vector. In each step of this iteration, the Jacobian matrix, J(__'), and the right hand

side, -__F(_Si), can be obtained based on the most recently updated MSP. Thus, in each

step of the Newton-Raphson iteration, one solves a set of linear algebraic equations.

The various terms in the Jacobian matrix and the right hand side of Equation (5.1.6)

is discussed next.

The global Jacobian matrix and forcing function column vector are assembled

using element equations contributed from every first-order tetrahedral element. Ac-

cording to Equations (5.1.6) and (5.1.1), the right hand side of the element equation,
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-F__.¢._(¢), can be written as follows:

-F_(_) =
-f_

-f_

-A

$31 $32 833 834

$41 S42 $43 $44 ¢4 -- /_4

PlP2
+

P3

P4

(5.1.7)

Here, fi can be further expressed as:

4

f, = E S,m(¢m-- ACre)- p; (5.1.S)
m=l

where, the sire terms were given earlier in Equation (4.3.13), and are rewritten here

for the reader's convenience as follows:

Vol" ONi ONm ONi 0Nm , ONi ON_

i,m=1,2,3,4 (5.1.9)

The vector P containing the p, terms in Equation (5.1.8) was given earlier in Equation

(4.3.21). The permeabilities,/_,/_, and #, used in Equation (5.1.9), which arise due

to the laminated nature of some of the iron cores, will be further discussed in this

section.

Meanwhile, the general term in the element Jacobian matrix, Equation (5.1.3),

can be expanded as follows:

Of, 0 4 Op_
0¢_ - 0¢_ F_,_,.,(_.,- Ae_,,,)-g2;

m----1

Since pi is a constant, the term Opi/Odpk -- 0. Hence, one can rewrite the above

general term in the Jacobian matrix as follows:

Ofi 4 Osim
0¢k - s,k + Z 0¢-----_(¢m - A¢_) (5.1.10)

rnml
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It should be pointed out that the term, (8m- At,n), in Equation (5.1.10) represents

the actual MSP value which includes the MSP jump at the nodes of that element.

Accordingly, the Newton-Raphson procedure for this nonlinear MSP-FE analysis can

be further stated as follows:

element Jacobian matrix are discussed next.

expand Osim/OcSk as follows:

(1) Use the most recently computed __ to calculate the actual MSP value, (__i _

A____), for each element, compute the corresponding elemental field intensities

and consequently update the material permeabilities for each element.

(2) Set up the element Jacobian matrices and forcing functions using the updated

material permeabilities and the updated actual MSP, (¢i _ A¢), calculated from

step (1).

(3) Assemble the element equations to form a global system, and solve this system

for 6¢ i.

(4) Update i using (_#+1 = _6' + 3__'). This updated __ will be used in the next

Newton-Raphson iteration step. Repeat the steps (1) through (4) until conver-

gence is achieved.

The details regarding the computation of the general term, Osim/OCk, in the

First, using Equation (5.1.9), one can

Osim _ Vol[(ONiONm](O#_: (0Ni0Nm (0#_ ONiO_,_ (O#_l (5.1.11)
Oc_k Oz Oz "OCk) + Ou Ov )'0¢k' +(oz Oz )'OCk"

Notice, the elemental permeability values in Equation (5.1.9) and their derivatives

with respect to Ck in Equation (5.1.11), that is, the terms,

0ek' 0ok' 0ok

are dependent upon on the orientation of the iron laminations. In the case of this

MLA class of machines, the stator iron laminations are stacked along the z-direction,

as illustrated in Figure (5.1.1), with a stacking factor equal to k,. The formulation of

the elemental permeabilities and their derivatives in this particular case are explained

next.

An equivalent permeance model, which was developed in reference [35] is used

here to determine the elemental permeability values, _, #u, and #_. In this model,
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Varnish (Insulation)

et

Figure (,5.1.1) Iron-Varnish Composite with Iron Laminations Piled up

along the z-Direction
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the iron-varnish composite material within an element is substituted by a simple

material with anisotropic magnetic property.

Along the planes of the laminations (parallel to :roy reference plane), the perme-

ance of the substituted material is equal to that of the composite material consisting

of iron and varnish forming parallel flux paths as shown in Figure (5.1.2). According

to the derivation in reference [35], this leads to equivalent permeability values, p_,

and #y for the substituted material as follows:

(5.1.12)

where/tl is the permeability of the iron material. Notice, the mmf required to drive

a given amount of magnetic flux through a unit length of the composite material is

equal to the mmf required for the substituted material. This allows one to write the

following:

HI_ = H_, and Ht_ = Hey (5.1.13)

where Hi, and Hly are the :r and y components of the field intensity in the iron portion

of the composite material. Meanwhile, H,_ and Hey are the x and Y components of

the field intensity in the substituted material.

Along the z-direction, which is the direction normal to the lamination planes,

the permeance of the substituted material in this direction is equal to the permeance

of the composite material consisting of iron and varnish in series as shown in Figure

(5.1.3). According to the derivation in reference [35], the equivalent permeability

value pz can be written as follows:

= po/_1 (5.1.14)
Pz uoks + (1 - ks)m

Notice, in this direction, the magnetic flux flowing through the iron of the composite

material is equal to that through the substituted material. Thus, one can write the

following:

B_z = B_ (5.1.15)

where t3t_ is the z-component of the flux density in the iron portion of the composite

material, and B_ is the z-component of the flux density in the substituted material.
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Figure (5.1.2) Permeabilities _x and/1_ Along the Planes of the
Iron Laminations
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Thus, one can rewrite the relationshipexpressedin Equation (5.1.15)using the field
intensities asfollows:

#IHlz = ttznez

where Hlz is the z-component of the field intensity in the iron portion of the composite

material, and H_ is the z-component of the field intensity in the substituted material.

This consequently leads to the following relationship:

His = p_ H,z (5.1.16)
//I

Equations (5.1.13) and (5.1.16) enables one to find the field intensity in the iron

portion of the composite material using the field intensity in the substituted material.

In each step of the Newton-Raphson procedure, one obtains the elemental field

intensities (the field intensities in the substituted material), H,,, Hey, and H_z, by

taking the gradient of the computed MSPs. Using Equations (5.1.13) and (5.1.16),

one can find the resultant field intensity value in the iron portion of the composite

material as follows:

H, =  /HL + +HL

= _/H,_ + H_ + (#Z)2H}zpl (5.1.17)

Consequently, using H_, the iron permeability/_1 can be obtained through an interpo-

lation on the B-H curve associated with the iron portion of the composite material.

In this research, the cubic spline interpolation [87] is used for the numerical B - H

curve fit. Finally, one uses Equations (5.1.12) and (5.1.14) to calculate the elemental

permeabilities,/_,, p_, and #_.

Meanwhile, using the relationship between the iron permeability and the elemen-

tal permeabilities (Equations (5.1.12) and (5.1.14)), the derivatives of the elemental

permeabilities with respect to the nodal MSP in Equation (5.1.11) can be written as

follows:

(5.1.1s)
0¢k 0¢_
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o,_ kso,,, (5.,.19)K£;= oCk

and

o,z _ k_(_)_om (5.1.o_o)
o¢k m

The term, 0/tl/0¢k, used in the above three equations can be calculated as follows:

0#t 0_ OHz OHt dpl (5.1.21)
06"--_k= ogz OCk = -OCk dH_

where, d#1/dH, can be found from the cubic spline interpolation associated with the

B-H curve fitting process. Furthermore, in order to obtain the value of OH1/OCk,

one can write the following:

OHI 0
- _/HL+ H_ + IG

Ook OCk

Substituting for Hl_, HI_, and HI_ from Equations (5.1.13) and (5.1.16) yields

OHI 0 /H 2
OCk(*Ok V

HI
(5.1.22)

where

0 Nk

OY,_ _ d: -ff2_O0¢ = _ 0__0.(0__0_._ NhCh) = OzOVk _k(-_ ) O_ OVkh=,
(5.1.23)

and

OHev

O¢k

0 OO 0 0 4 ONk

o;k(-NI = -N(-_ Z N_¢_I= - O--7
h=l

0;k(--g_z/ = Ho.. ( )+ U___0/-/_,

(5.1.24)
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0 r Po 1 _ OA_

-tLo(1 - ks)He, 0#i tL, ONk

[_ok,+ (1 - ks)m]20¢_, #i Oz
(5.1.25)

Substituting Equations (5.1.23), (5.1.24), and (5.1.25) into Equation (5.1.22), and fur-

ther substituting the resultant OHl/OCk of Equation (5.1.22) into Equation (5.1.21),

one obtains the following:

ONk ONk (_)2 ONk
0#i _ ( dt_1] H*_ 0"--7 + Hey O----_v+ I'I H**_Oz

Ook "dH1" H1

_ ( dpt ) p_.po(1 - k,)H_ (Opl_
"_z'l,,[po_-+ i [ _2 i'_-_P--;_]2H, ' OCk'

(5.1.26)

Notice that both sides of Equation (5.1.26) contains the term Opt/OOk. Rearranging

Equation (5.1.26), one obtains the explicit algorithm form for 0pl/00k as follows:

. ONk O,'Vk ONk

( d t.zi Hea: -'_x...=_._+ H, u O'--"y-+ H_ , --7 ( P_E.")2Om
- (1 . 3 2 0. Pt (5.1.27)- k,)tt_H_ du_

Ook "dH1" HI + pop_ (_)

Finally, the element equation for the Newton-Raphson iteration can be summa-

rized using the following equations:

0fl 0fl 0 fl 0fl

oA oA oA oA
g-g gg;-gg; g-g 
o5 05 o5 05
0¢1 0¢_ 0¢3 0¢4

oA oA oA o£
°

0¢1 0¢_ 003 0¢4

/_¢1 [

4

-I2
m=l

4

-Z
ra=l

4

-Z
m=l

4

-Z
m=l

s_,,.(¢,,,- ACre)+ p_

s3,..(¢m -/x¢.,) + p3

S4,rn(¢m -- ACrn) + P4

(5.1.28)
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where,

s_,,,,= Vol[(#_ ON' 07¢"` ON, ON., . ON_ ON.,az ) + (#_ ay ov ) + (#" & az )] (5.1.29)

O_x. ONk &\_ ONk ONi ONkOfi _ Vol[(#,: ) + (#u + (P* )1
Oc_k Oz Oy _v ) Oz Oz

4 r

., .Ore [k OX_0._"` ON, ON.,
+ v o_-ff-_k_ " -_z Ox + k" o y Oy

"`=1

#__Z)2ON, aN"`
+ (m az & ](¢_- zx¢_)

(5.1.30)

Here, O/Jz/0Ok is given in Equation (5.1.27), and pi is given in Equation (4.3.21).

Again, pz is the permeability of the iron portion of the core laminations which can

be obtained from the B - H curve associated with that particular iron material using

HI given in Equation (5.1.17).

The 3D-FE MSP formulation discussed above was successfully applied to the

large scale nonlinear magnetic field problem in the example 14.3 kVA MLA at hand.

Relaxation factors were used to avoid numerical divergence, and to improve the qual-

ity of convergence, of this Newton-Raphson method under some circumstances in-

volving heavy magnetic saturation. This is explained in the following section.

5.2 Adaptive Relaxation Factors for the

Newton-Raphson Procedure

It was found that tile use of the standard MSP Newton-Raphson procedure expressed

in Section 5.1 could not lead to proper convergence when heavy degrees of magnetic

saturation were involved in the computation. In fact the method tended to diverge

in some cases of such heavy saturation. For this reason this author found it useful to

slow the corrective component of the iterative process by means of relaxation factors.

These relaxation factors were applied through modifying the process of updating the

permeability derivatives, d#l/dHl, and 0p_/0¢_, in each step of the MSP Newton-

Raphson iteration.

In the standard MSP Newton-Raphson method, the term dpt/dHt in equation
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(5.1.27) is updatedusingthe valueobtained fi'om the associatedmaterial characteris-
tic (B - H curve) of the iron at the most recently computed field intensity, Hr. This

process can be written as follows:

din ,_ dm I (5.2.1)
mo.,roc.otl

where d#1/dH11mostr, cent is calculated using cubic spline interpolation from the asso-

ciated B - H curve of the iron at Ht, and (d_i/dHz) i is the term used in Equation

(5.1.27) for the i-th step of Newton-Raphson iteration. This updating process was

slowed down by a relaxation factor of 0.9 applied to Equation (5.2.1), which can be

expressed as follows:

d#l )i d#1 )i-1 d_I most(Tff; =(1-°9)(Zff7, +°9Yff; rock°, (5.2.._)

where, (dpl/dHl) i-1 is the permeability derivative used in the (i-1)th step in the

Newton-Raphson iteration. This relaxation factor was found to be useful in improving

the quality of convergence of the Newton-Raphson iteration under heavy saturation

conditions. That is, this relaxation factor helps a well-conditioned convergence of the

results in the sense of both converged global result (stored magnetic energy) and local

results (elemental magnetic field quantities).

Another type of relaxation factor was used to slow down the updating process

of 0tLt/0Ok in the element equations. Using this relaxation factor, the term in an

element of the Jacobian matrix, Ofi/OOk, which was given by Equation (5.1.30), can

be rewritten as follows:

Ofi Vol[(#:: ONi ONk ONi ONk 0_\_ ONk
o¢--;= 0_ _ )+ (u_ 0y 0y ) + (#__ 0_ )]+

4
(_)VoZ E[k, °x'°xm

.,=1 Ox Ox
+ k,

ON_ON,,
Oy Oy

+ (_)_ 0N' 00--_m Oz 1(_ - _¢_)

(5.2.3)

where 3 is the relaxation factor. The value of/3 used in the above equation is cal-

culated on an element by element basis, and depends on the normalized change of

elemental permeability in the latest Newton-Raphson iteration steps. That is, a

141



higher value of ,3 is chosen for the element where only a small change in elemental

permeability occurred in the last iteration step, while a lower value of/3 is chosen

for the element where a bigger change in elemental permeability occurred in the last

iteration step. Hence these factors are referred to in this dissertation as adaptive re-

laxation factors. The adaptive relaxation factors were calculated using the following

equations, which are functions of the change in the permeability, A#,, in relation to

an adaptive iterative factor, a (0 _< a < 1), which is explained later on in this section:

= 1 for A#_ < a

3=(1-Ap')2 for a<_ A#,<_ 1

/3=0 for _Pe > 1

for 0 _< a < 1 (5.2.4)

and

/3= 1 for a = 1 (5.2.5)

In Equation (5.2.4) _/Xp, is the normalized change of elemental permeability in the

latest iterations. A/to can be calculated as follows:

Al, c = ]pie - #/c-x [ (5.2.6)
0.5(.; +

where it_ and pic-x are the material permeabilities for the element e obtained from

the latest two (i-th and (i-1)th) iterations. In Equations (5.2.4) and (5.2.5), o is an

adaptive iterative factor which allows one to adjust the calculation of the adaptive

relaxation factor,/3, under different saturation conditions. The relationship between

and Ajuc, with respect to the adaptive iterative factor, a, which was expressed by

Equation (5.2.4), is shown by curves in Figure (5.2.1). The adaptive iterative factor,

a, can be chosen between one and zero.

When a is chosen to be one, the adaptive relaxation factor,/3, from Equation

(5.2.5) is always equal to unity for any A/_. In this case, the iteration process is a

standard Newton-Raphson procedure as derived in Section 5.1. When a is chosen to

be less than one, the adaptive relaxation factor, /3, from Equation (5.2.4) becomes

equal to unity, or a value in between one and zero, depending on the most recent
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changeof elementalpermeability. Thusadeliberateslowingdownin the rate of change
of 0/_r/0¢k is achieved in this case, which successfully avoids possible divergence

that could take place in the Newton-Raphson iterative process. From this author's

experience, the adaptive relaxation factors improved the stability of the convergence

of the Newton-Raphson procedure without adversely affecting the convergence speed

in any significant manner. The most appropriate value for the adaptive iterative

factor, a, for a lightly saturated problem was found to be between 1.0 and 0.9. While

for a heavily saturated problem, a value of c_ between 0.2 and 0.1 is suggested.

Table (,5.2.1) shows some example cases of nonlinear magnetic field computations

for the 14.3 kVA modified Lundell alternator. The total number of elements in these

examples is 113,660, and the total number of unknowns is 20,112. The first case

shown in Table (,5.2.1) is a no-load, rated terminal voltage case with a total field

excitation of 980 AT. In this case only a moderate saturation condition is expected

in the main magnetic circuit path of the MLA. One can observe that the adaptive

iterative factor, ct, can be chosen to be equal to unity, which means that one is using

the standard Newton-Raphson iteration, and one obtains a very fast convergence.

The second case is a no-load condition with a total field excitation of 3000 A 7', which

is nearly three times as high an excitation as the rated field mmf in the first case.

Under this field excitation, the main magnetic circuit of the MLA is driven into very

heavy saturation. One can see that the standard Newton-Raphson procedure did not

converge under this condition. However, using the adaptive relaxation factors with

an adaptive iterative factor of 0.5, one obtains a fast and stable convergence. The

third example shown in Table (5.2.1) is the rated load case with a field excitation

equal to 2300 AT. In this load case, both the field winding and the three phase

armature windings were carrying currents, and the airgap flux density distribution is

distorted by the armature reaction. In such a case extremely heavy saturation occurs

in the portions of the stator teeth area near the trailing side of the airgap flux density

distribution. As one can see from Table (5.2.1), under this condition the adaptive

iterative factor, c_, should be chosen to be between 0.2 and 0.1.

In the above examples, two convergence test criteria were used to check whether

the iterative process approaches the correct answer or not. The first criterion is based

on the change of the computed total magnetic energy from two consecutive Newton-

Raphson iteration steps. This change of total magnetic energy was computed as a
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Table (5.2.1): Number of Iterations of the Newton-Raphson
Method in the Magnetic Field Problemsof
the 14.3kVA MLA

Adaptive Iterative Factor
Case a=l.0 a=0.5 a=0.2 o=0.1

No-Load

(If=980 AT) 7 8 9 12

No-Load

(II=3000AT) Diverged 14 18 21

Rated-Load

(II=2300AT) Diverged Diverged 17 19

Energy Tolerance: AW = 10 -s Per Unit

Permeability Tolerance: Ap = 10 -2
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normalizedquantity, AIV i, as follows:

2xW i= {Wi- Wi-'l
0.5(W i .q- W i-l)

per unit (5.2.7)

where W i is the total magnetic energy computed from the i-th step of the iteration,

and IV i-1 is the total magnetic energy computed from the (i-1)th step of the iteration.

The second convergence criterion is based on the computed maximum change of the

elemental permeabilities between two consecutive Newton-Raphson iterations. This

maximum permeability change is computed as a normalized quantity, Ap i, expressed

as follows:

i i-1 1Ap i= max --_--___
_=1,2 .... 0.5(_e + _, )

(5.2.s)

where pi and _z_-1 are the material permeabilities for the element e obtained during

the i-th and (i-1)th iterations. When both of these changes, ,-_IV i and Ap i, become

sufficiently low, that is well within the given tolerance values, the iteration is brought

to an end. The second convergence criterion is important, because it has been found

that in some heavy saturation cases the computed total energy seemed to cease chang-

ing while the computed flux densities and the associated permeabilities in some local

elements were diverging. Simultaneous use of these two convergence criteria guar-

antees that one obtains the results from a well converged solution. In the example

computations shown in Table (5.2.1) both energy type convergence and permeability

type convergence tolerances were set to very small numbers of 1 x 10 -s and 1 x 10 .2

per unit respectively. This indicates that excellent convergences have been reached in

all these computation examples. Results of the application of the Newton-Raphson

method to the modified Lundell alternator under different operating conditions are

given in later chapters.
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Chapter 6

The 3D Finite Element Grid for the

14.3 kVA Modified Lundell Alternator

In order to compute the magnetostatic field distribution throughout the magnetic

circuit of an MLA, using the combined MVP-MSP method explained in previous

chapters, one must develop a discretization of the global solution volume, into a

suitable 3D-FE global grid. Such a 3D-FE grid was developed in this research for the

example 4-pole, 14.3 kVA MLA. Details on the geometry dimensions and design data

of this machine were given earlier in Chapter 1.

Because of the repetitive pattern of the geometry and excitation current distri-

bution in every pair of poles of this class of machines, the 3D space which covers a

span of a pair of poles in the MLA was chosen as the global magnetic field solution

region. Two 3D-FE grids were generated separately to cover the stator portion of the

global grid geometry, as well as the rotor portion of the global grid geometry. The

stator 3D-FE grid and the rotor 3D-FE grid can be connected at any desired rotor

position to form a global 3D-FE grid. In this chapter, some basic techniques used in

the 3D-FE grid generation are explained. The resultant 3D-FE grids for the example

14.3 kVA MLA are presented.

6.1 Basic Techniques for the 3D-FE Grid Gener-

ation

The basic building block used in the 3D-FE grid for the combined MVP-MSP method

is the tetrahedral element. The choice of the tetrahedral element is based on the flex-
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ibility of this type of element in handling very complicated geometry and material

topology associatedwith the MLAs under consideration. However, it is not conve-

nient to directly handle tetrahedral elements to generate 3D-FE grids because of the

difficulty in visualization and computer implementation for these elements in forming

FE grids to cover a specified 3D volume. The complex nature of the machine geometry

of the MLA, such as the armature winding end turn region, as well as the difficult ge-

ometries of the interfaces between the magnetic poles and the non-magnetic separator

of the bimetallic rotor, adds substantial difficulties to this discretization work.

Two types of techniques have been used to assist in the generation of the 3D-

FE grids. In one of these techniques, one uses triangular prisms as super-elements to

build up 3D-FE grids for some portions of the machine. The second technique, which

will be called the tetrahedral element filling technique, was developed to handle very

difficult grid geometries. In this filling technique one divides a space into a number

of straps (bars or toroids) with triangular cross-sections, each strap is then filled by

tetrahedral elements one by one, for one strap after another, see Figure (6.1.1) for a

schematic demonstration. These two techniques are further detailed in the following

subsections.

6.1.1 Triangular Prism Super-Elements

As an aid in constructing the 3D-FE gridding for covering some portions of the

machine geometry, triangular prisms are used as super-elements to help discretize the

3D volume for the first step in the generation of the 3D-FE tetrahedral gird. Each

of these triangular prisms is then subdivided into three tetrahedrons to complete

the grid topology. There are two basic ways to divide a triangular prism into three

tetrahedrons, as shown in Figure (6.1.2). Alternately using these two types of super-

elements makes it possible to avoid crossing of edges of tetrahedrons from two super-

elements, which might happen at the interfaces, and which must not take place in a

3D FE grid. A triangular prism can be itself a finite element. However, because of

the restrictions on geometric shapes which are amenable to discretization by prism

geometry, the triangular prisms are only used for assisting in the generation of the

tetrahedral type FE grids for some portions of the MLA geometry. Nevertheless, the

final grid model used in this work of 3D-FE magnetic field computation is totally

based on tetrahedrons.
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Figure (6.1.1) Tetrahedral Element Filling Technique
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Using a triangular prism or even considering two triangular prisms forming

one hexahedral block as a super-element, is a very efficient and convenient way to

construct the necessary 3D-FE grids. Many machine parts such as the field coils,

the housing, and the rotor shaft, can be easily discretized using triangular prisms.

However, there are some circumstances in which the triangular prism super-elements

are not suitable. For example, when elements must be filled into a gap between two

machine parts, where the two surfaces of the gap have different surface triangular

patterns, the method of triangular prism super-elements will not work. Thus a filling

technique must be developed to tackle such difficulties.

6.1.2 The Tetrahedral Element Filling Technique

The main idea of this tetrahedral element filling technique is that one can fill tetra-

hedrons one after another into a triangular strap (a bar or toroid with triangular

cross-section) when two side walls (or surfaces) of this strap have been already dis-

cretized into triangular grids. After this strap is fully filled with tetrahedrons, the

third side wall of this strap is automatically in a pattern of a triangular surface grid,

which will be in turn used to determine the tetrahedral element filling manner of the

adjacent strap. The following is an example of the application of this tetrahedral

element filling technique.

Consider Figure (6.1.3), a gap between two surfaces, with fixed surface triangu-

lar grids on each, is to be filled with tetrahedral elements. In order to apply the filling

process, the space of the gap is separated into five straps as shown in the lower part of

Figure (6.1.3). Notice that each of the straps has one of its three side walls (surfaces)

with a given set of surface triangles. Meanwhile, the side wall, $1, of the first strap

has to be discretized into a suitable set of triangles before the element filling process

starts, see (a) of Figure (6.1.4).

The strap, 1, in Figure (6.1.3), is first put through the tetrahedral element filling

process. At the end of the this filling process a surface triangular grid will have been

established on the third wall (surface), $3, of the first strap (bar), see (a) of Figure

(6.1.4). This side wall, $3, is the interface between the first strap (bar), 1, and the

second strap (bar), 2, see Figure (6.1.3). Thus, after the filling process for the first

strap is finished, the second strap will have been ready with surface triangular grids

on two of its three side walls. The second strap can be then put through the same
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Figure (6.1.:3)An Example Application of the Element Filling Technique
to a Gap BetweenSurfaces
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filling processasusedfor the first strap. Similarly, the third, the fourth, and the fifth

straps (bars), Figure (6.1.3), can be filled with tetrahedral elementsby sequential
application of the aboveprocedurein a chain manner. The resulting grid which fills
the gap of Figure (6.1.3) with tetrahedral elements is shown in Figure (6.1.4).

Next, consider the first strap (bar) in Figure (6.1.3) as an example to demon-

strate how a tetrahedral grid is computer generated to fill the bar volume under

consideration. Let one imagine that this strap is now put in an upright position

as shown in Figure (6.1.5), graphs (1) through (3), for the convenience of visualiza-

tion. The front side wall (surface) with nodes 1, 7, 8, 9, and 2, see graph (2) of

Figure (6.1.5), is the wall without a given triangular grid. Each tetrahedron will be

generated by a sequential procedure which can be best summarized as follows:

(1) Chose a triangular base for the tetrahedron,

(2) Find a new node as the fourth vertex of the tetrahedron,

(3) Link the new node to each vertex on the base to complete a tetrahedron.

Applying the three steps given above, the triangle with nodes 1, 7, and 3, designated

by (1,7,3,1), see graph (3) in Figure (6.1.5), is chosen as the base for the first tetra-

hedron. A searching process is then carried out, which shows that triangle (1,3.4,1)

and triangle (3,7,4,3), graph (3) in Figure (6.1.5), share edges 1-3, and 3-7, with the

triangular base (1,7,3,1), respectively. From this information, only node 4 is eligible

to be the new vertex of the tetrahedron being formed. Accordingly, nodes 1.7.3, and

4, make the first tetrahedral element {1,7,3,4}, as shown in graph (4), Figure (6.1.5).

After this tetrahedral element is made. node 4 takes place of node 3 to make a new

triangular base (1,7,4,1) for the second tetrahedron under formation.

Repeating the same searching process as explained above for the first tetrahe-

dron, triangle (1,4,2,1) and triangle (4,7,8,4) are found to share edges, 1-4, and 4-7,

with the base triangle (1,7,4,1) being currently considered, respectively. Under this

condition, either node 2 or node 8 can be taken as the new vertex of the second

tetrahedral element. A criterion has to be developed to decide which node should

be chosen to yield a resulting tetrahedral element with the least possible 3D geome-

try ill-conditioning. The criterion established here can best be adhered to using the

following concept: choose one node among these two candidate nodes such that the

edge appearing on the front wall, 1-7-8-9-2-1, will be the shortest. Thus node 8 is

chosen as the new vertex, because the distance from node 1 to node $ is shorter than
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Figure (6.1.4) The FE Grid for the Gap Example in Figure (6.1.3)
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the distancefrom node 7 to node 2. After linking node 8 to the three verticeson

the triangular base,(1,7,4,1),anedgeemanatingform node8 to node 1, as well asa
triangle with nodes 1, 7, and 8, appearon the front wall of the strap, seegraph (5)

in Figure (6.1.5).

Now, the triangle (1,8,4,1)can bechosenasthe new basefor the third tetrahe-
dron to continue the tetrahedral element filling process. In this processone repeats
the above mentioned procedureas many times until the last tetrahedron {2,9,5,6}

with nodes2, 9, 5, and 6, at the top of the strap is completed,seegraph (6) in Figure
(6.1.5). It should be pointed out that the aforementionedsearchprocessto find can-

didates for the new vertex of each new tetrahedron has to be carefully formulated in

such a manner that no edges of any tetrahedrons generated in the grid ever intersect.

Figure (6.1.6) shows a view of the finished tetrahedral grid filling the strap.

This tetrahedral element filling technique, in corporated with the triangular

prism super-elements, was successfully used to generate the 3D-FE grids for the MLA

at hand. The whole grid structure was developed first by separately building several

small grid modules using super-elements, then connecting the modules together using

this filling technique. Also, the tetrahedral element filling technique has been found

to be very useful in connecting the stator grid and the rotor grid to complete a global

tetrahedral 3D-FE grid for the computation of magnetic fields in the MLA.

6.2 The 3D-FE Grid of the Stator

The stator 3D-FE grid of the MLA was developed for the example 4-pole, 14.3 kVA

MLA in a modular fashion. The key FE stator grid module is a discretization into

tetrahedral finite elements of a stator slot pitch which extends from the mid cross-

sectional plane to one of the end-bells, see Figure (6.2.1). This module includes one

armature end region and one field coil, in addition to the outer casing and borders

the rotor in both the main and auxiliary airgaps, as shown in Figure (6.2.1).

Circumferential repetition of this stator slot module and mirror imaging yields

the 3D-FE grid of the stator portion in the global solution volume. The resulting

outer surface view of this stator 3D-FE grid is shown in Figure (6.2.2). Meanwhile

the surface FE discretization of the inner boundary of the stator grid facing the rotor

is shown in Figure (6.2.3). Notice, this is a 36 slot stator, thus only 18 slots pitch
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Figure (6.1.6) The FE grid Generated Using the Tetrahedral Element

Filling Technique
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imprints are shown in the FE surface pattern of Figure (6.2.3)

In order to further illustrate the complexity of the stator's 3D-FE grid, an

outer view of the surfaces of the FE discretization of the stator core is shown in

Figure (6.2.4). Furthermore, Figure (6.2.5) shows the complete 3D-FE discretization

of an armature coil, while Figure (6.2.6) illustrates the nature of the end turn 3D-FE

layout. Meanwhile, Figure (6.2.7) illustrates the embedding of the armature coils

in the stator core. In addition, Figure (6.2.8) shows the outer surface of the 3D-FE

discretization of the ring-shaped field coils.

Furthermore, Figure (6.2.9) and (6.2.10) show by vector arrows the directions of

current flow (current density vector) in the 3D-FE discretization of an armature coil

and the field coils, respectively. Finally, an outer view of the 3D-FE discretization

of the casing of the MLA, from the bottom side of the stator gird shown in Figure

(6.2.2), is shown in Figure (6.2.11)

6.3 The 3D-FE Grid of the Rotor

The 3D-FE grid module of the rotor was conceived in the form of one octant of the

4-pole rotor of the example 14.3 kVA MLA, whose outer FE grid surface facing the

viewer is shown in Figure (6.3.1). This one octant module was mirror imaged and

rotated to form the rotor grid covering a two-pole pitch span of the 4-pole rotor, as

shown in the outer surface view of Figure (6.3.2). Figure (6.3.3) illustrates the 3D-FE

grid structure in one of the rotor magnetic portions in the rotor grid span. Notice

the narrowing nature of the pole arc on the surface from one end of the pole face to

the other. Meanwhile, the 3D-FE discretization covering the two magnetic portions

of the rotor in the rotor grid span is shown in Figure (6.3.4).

6.4 Element Filling in Between Stator and Rotor

Grids- Global 3D-FE Grid

The 3D-FE stator and rotor grid were interfaced along the inner-most and outer-most

boundary surfaces of the two grids, respectively. That is, the interfacing takes place

in the main airgap, end-turn regions, and two auxiliary airgaps, respectively. This
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interfacing process leads to a layer of 3D finite elements which links the two grids.

The 3D-FE gridding algorithm was developed in such a way that the interfacing can

be carried out at all relative stator to rotor positions covering half an ac cycle, that

is 7r electrical radians (180 ° electrical).

The inner-most boundary surface of the stator 3D-FE grid and the outer-most

boundary surface of the rotor 3D-FE grid can be observed in Figures (6.2.3) and

(6.3.2). Notice that the surface discretization patterns of the stator grid and the rotor

grid are different. The tetrahedral element filling technique described in Section 6.1

was used to connect these two grids together by filling tetrahedral elements into the

gap in between these two grids.

Examples of global 3D-FE grid, corresponding to two different rotor to stator

relative positions are shown in Figures (6.4.1) and (6.4.2). Mid-plane cross-sectional

views of the FE grid corresponding to the 3D-FE grids of Figure (6.4.1) and (6.4.2)

are shown in Figures (6.4.3) and (6.4.4). In addition, a planar gridding view of the

bottom of the 3D-FE gridding of the global solution volume is given in Figure (6.4.5).

The resultant global 3D-FE grid for the example 14.3 kVA MLA contains

113,660 element and approximately 20,600 grid nodes. The combined MVP-MSP so-

lution method was carried out using this global 3D-FE gird to compute the magnetic

fields at various rotor to stator positions and various current excitation conditions.
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Figure (6.4.5) Bottom View of the Global 3D-FE Grid
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Chapter 7

Three Dimensional Magnetic Field

Computation in the 14.3 kVA MLA

In this chapter, the implementation of the MVP-MSP method to the computation of

the 3D magnetostatic fields in the global solution volume of the 14.3 kVA MLA, is

presented. This magnetic field computation includes full account of magnetic mate-

rial nonlinearities, laminated core anisotropies, as well as complex geometries due to

slotting and end-turn armature winding connections.

The detailed formulation of the combined MVP-MSP method of computation of

3D magnetic fields was developed in Chapter 3 through Chapter 5 of this dissertation.

In this example 14.3 kVA MLA problem, the magnetic field is assumed to be confined

within the outer boundaries of the casing of the MLA.

7.1 Geometry Partition of the MLA

Because of the nature of the magnetic circuit geometry of the 4-pole 14.3 kVA MLA,

the global solution volume need only extend over two pole pitches of the rotor struc-

ture. Accordingly, a two-pole periodicity boundary condition was applied, and thus

resulting in the global solution volume shown in the longitudinal cross-section of

Figure (7.1.1-a) and the radial cross section shown in Figure (7.1.I-b).

The global solution volume shown in Figure (7.1.1) is divided into two sets of

subregions, Subregion (1) and Subregion (2). Subregion (1) is a current-carrying MVP

subregion, which contains all the windings including the iron portions in between.

Furthermore, the MVP subregion consists of three separate portions. Two of the
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Figure (7.1.1) The MVP-MSP FE Solution Volume of the 14.3 kVA MLA
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three portions, which are referred to as Subregion (l-a) in Figure (7.1.i-a), contain

the stationary field windings on both ends of the MLA, respectively. These two MVP

subregions extend axially through both ends of the global solution volume, see Figure

(7.1.1-a). The 3D-FE grid of the MVP subregion for one half of the field coil is shown

in Figure (7.1.2). The third portion of the MVP subregion contains the armature

winding coils for phases, a, b, and c, as well as the portions of the stator teeth

sandwiched in between, see Figure (7.1.1-b). This MVP subregion is a cylindrically

shaped volume with a hollow cylindrical center. Figure (7.1.3) shows the 3D-FE grid

which occupies one half of this MVP subregion within the global solution volume.

Meanwhile, the current-free subregion, Subregion (2) in Figure (7.1.1), encompasses

the global solution volume excluding the current-carrying MVP subregions (I-a) and

(l-b), Figure (7.1.1).

It should be pointed out that any possible closed path within the confines of

the current-free subregion cannot enclose net electric currents in the two field coils

as well as in the armature winding coils. This is a necessary condition with which a

single valued MSP can be used in the current-free subregion.

The inclusion of the iron portions sandwiched in between the armature coil bars

in the MVP subregion has greatly simplified the geometry contours of this subregion.

This ability of including iron in the current-carrying region is made possible by the use

of the reduced magnetic vector potential (RMVP) in calculating the curl-component

of the field intensity within the current carrying region, which is the unique feature

of this combined MVP-MSP 3D-FE solution method.

As was discussed in Chapter 3, MSP jump distributions are to be enforced

on the interfaces between the current carrying MVP subregions and the current-

free subregions to guarantee the continuity of the tangential component of the field

intensity computed on those interfaces. Such interfaces, in the case of the 14.3 kVA

MLA, are the outer surface of the 3D-FE grid in Figure (7.1.2) for the MVP subregion

of the field coil, and the outer surface of the 3D-FE grid in Figure (7.1.3) for the MVP

subregion of the three phase armature windings. Meanwhile, discontinuities of the

MSP derivatives are to be enforced on the interfaces between iron and air (conductor)

within these MVP subregions to guarantee the continuity of the normal component

of the flux density computed on those interfaces. In the MVP subregion for the field

coil of Figure (7.1.2), there is a surface between the portion of the casing and the

field coil, on which the discontinuity of the MSP derivative is to be enforced. In the
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MVP subregionfor the armature windingsof Figure (7.1.3),the discontinuitiesof the
MSP derivativesare to beenforcedon the interfacesbetweenthe armature core tooth
stemsand the armature coil bars.

7.2 The Computer Algorithm of the Combined

MVP-MSP Method Applied to the MLA

The sequence of steps and flow of data in the resulting combined MVP-MSP computer

algorithm is shown in Figure (7.2.1). This computer algorithm can be explained in

detail as follows:

Step (1); Subroutine (Fortran File (FF)) slot.f

(1.1) Given an input data file containing the main MLA geometric param-

eters of the stator, for details see Table (1.3.1) and Figures (1.3.1) and (1.3.2) of

Section 1.3, form a 3D-FE grid module for one stator slot pitch, Figure (6.2.1).

(1.2) Repeat the 3D-FE one stator slot module for the number of slots in

a two-pole pitch span to obtain the 3D-FE grid portion of the stator, Figure

(6.2.2).

(1.3) Pick the 3D-FE grid portions which cover the MVP solution Sub-

regions (l-a) and (l-b), Figure (7.1.1), from the completed 3D-FE grid of the

MLA's stator. These encompass the field winding and armature winding. Out-

put data files are gridvp.fw and gridvp.abe, respectively.

Step (2); Subroutine (FF) rotor.f:

(2.1) Given an input data file containing the main MLA geometric param-

eters of the rotor, for details see Section 1.3 of this dissertation, form a 3D-FE

grid module for one octant of the rotor geometry, see Figure (6.3.1).

(2.2) Repeat the 3D-FE grid module of the rotor obtained in (2.1) above,

in conjunction with mirror imaging, to produce the 3D-FE rotor grid, Figures

(6.3.2) through (6.3.4).

Step (3); Subroutine (FF) mvp3d.f:

(3.1) Perform the RMVP 3D-FE solution, Equation (3.1.2), in Subregion

(l-a) of Figure (7.1.1), using a unit current assignment for the field current, if,

and store the resulting normalized magnetic field solution data in a temporary
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@1 Perform necessary machineIperformance simulations

Figure (7.2.1) Sequence and Data Flow of the MVP-MSP 3D-FE Computation
for the 14.3 kVA IvILA
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data file for use in forthcoming steps.

(3.2) Perform tile RMVP 3D-FE solution, Equation (3.1.2), in Subregion

(l-b) of Figure (7.1.1), using a unit phase (a) current assignment for i_ (while

ib = ic = 0), and store the resulting normalized magnetic field solution data in

the temporary data file of (3.1) above for use in forthcoming steps.

(3.3) Repeat the process in (3.2) above, using a unit phase (b) current

assignment for ib (while is = i¢ = 0).

(3.4) Repeat the process in (3.2) above, using a unit phase (c) current

assignment for i¢ (while ib = ic = 0).

Step (4); Subroutine (FF) mvp3d.f:

From the normalized RMVP solution results obtained in step (3) above,

compute the normalized discontinuity (jump) distribution in the MSP, Equa-

tions (3.1.16), on the outer surface of Subregions (l-a) and (l-b) and the distri-

bution of the normal component of the derivative of the MSP, equation (3.1.17),

at the air-iron boundary interfaces in Subregion (l-b), due to unit current values

of if, i_, ib, and ic. Store the results of the normalized A¢ and O¢/On distribu-

tions in the data files, phi.fw, phi.a, phi.b, and phi.c, respectively, for use in

the global MSP 3D-FE solutions.

Step (5); Subroutine (FF) msp3d.f:

Given a rotor position angle, 0, rotate the 3D-FE rotor grid obtained in

Step (2) accordingly, and link the 3D-FE rotor grid to the 3D-FE stator grid

obtained in Step (1), to obtain the 3D-FE grid covering the global solution

volume of the MLA at the given rotor position. See Figures (6.4.1) and (6.4.2).

Step (6); Subroutine (FF) msp3d.f:

(6.1) Given a set of field excitation and armature winding currents il, i_,

ib, and ic, corresponding to a certain MLA operating condition (load or no-load,

etc.), generate the corresponding forcing functions (actual A¢ and O¢/On) for

the global 3D-FE MSP solution, using the normalized values of A¢ and 0¢/0n

stored in the data files, phi.fw, phi.a, phi.b, phi.c, obtained in Step (4)

above. Also, perform the 3D-FE global MSP solution, ¢, thus computing the

magnetic field intensity, H = -V¢, throughout the current-free region. Also

generate the actual A,m_p throughout the current-carrying regions, using the

given currents i], is, ib, and i¢, as well as the normalized values of A_p stored

in the data files, phi.fw, phi.a, phi.b, phi.c of Step (4), consequently compute
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E

the magnetic field intensity, ti = u0(V x A_mvp) - V¢, throughout the current-

carrying region. Thus one completes the computation of the 3D magnetic field

distribution throughout the magnetic circuit of the MLA, at the given rotor

position angle, 0, for the given operating current conditions for i:, i_, ib, and ic.

(6.2) Compute all the self and mutual winding inductances, using the en-

ergy perturbation method, which will be explained later in Chapter 8 of this

dissertation, at the given rotor position, 0, and its corresponding winding cur-

rents, i:, i_, ib, and ic.

(6.3) Repeat the computations in (6.1) and (6.2) above for incrementally

increasing values of the rotor position, 0, while updating the corresponding

values of the currents, i:, i_, ib, and ic, over half an ac cycle, that is zr electrical

radians (180 ° electrical), storing all inductances and necessary magnetic field

data in the output file, induct.dat.

Step (7); Post Processing:

Based on the results of the 3D-FE magnetic field solutions and MLA wind-

ing parameters (inductances) computed in Step (6) above, compute the desired

performance results.

7.3 Results of Computation of the 3D Magnetic

Field in the 14.3 kVA MLA

The results of magnetic field computation for the example 14.3 kVA MLA are only

included in this section to the extent that clearly demonstrates the 3D nature of

the magnetostatic field distribution throughout its magnetic circuit. Other 3D-FE

based computations and corresponding experimental verifications of the open-circuit

(no-load), short-circuit, and load characteristics are reported in later chapters.

Consider the case of computation of the field distributions under open-circuit

(no-load) conditions in this 14.3 kVA MLA; only the field excitation winding would

carry current under such conditions. The 3D-FE computed flux flow patterns in the

outer casing, rotor shaft and poles along the direct axis of the rotor are shown by

vector B arrows in Figure (7.3.1). The flux flow pattern in the end-turn region along

the direct axis of the rotor is shown in Figure (7.3.2). Meanwhile, Figure (7.3.3) shows

the flux flow pattern by vector B arrows in a cross-section midway in the stator core.
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Figures (7.3.1) through (7.3.3) confirm the intuitive directions of the main flux flow

pattern shown earlier in Figure (1.1.2) of Chapter 1. The 3D nature of the magnetic

field is self evident in these figures.

In order to present the open-circuit rated voltage radial flux density distributions

(waveforms) at the mid-airgap, consider the locations of nine cross-sections perpen-

dicular to the axis of rotation shown in Figure (7.3.4). That is, at axial z-locations,

z = z0, z = :t:zx, and z = +z2, in the main airgap, as well as z = +z3, and z = "t-z4, in

the auxiliary airgaps, as shown in the rotor schematic of Figure (7.3.4). The total field

excitation ampere-turns at the rated voltage open-circuit condition were found to be

980 AT. At this level of field excitation the magnetic field was computed throughout

the magnetic circuit of the MLA, and the radial flux density waveforms are shown

in Figures (7.3.5) and (7.3.6) at locations z = 0. and z = +1.22 cm. Also. Figure

(7.3.7) shows the radial flux density wave forms at z = +1.92 cm. This is in addition

to an isometric presentation of B_ distribution in the main airgap, under one pole

pitch, see Figure (7.3.8).

Notice the narrowing of the flux spread in the flux density waveforms as one

proceeds from z = 1.92 cm to z = 0, and onto z = -1.92 cm. This narrowing is

a direct result of the shape of the magnetic material constituting the pole face as

depicted in the rotor schematic in Figure (7.3.4) as well as in Figure (6.3.3). This

narrowing of flux spread in the flux density waveforms, and the dependence of the

profiles of the waveforms on the axial z-location is most evident in the waveforms of

Figure (7.3.7) obtained at, z = -t-1.92 cm, in comparison to the waveform obtained

at, z = 0. The lack of axial symmetry of the flux density waveforms in the main

airgap is a clear demonstration of the fact that 2D-FE magnetic field computation

methods could not have taken the above effects into account, and hence the resulting

3D nature of the field distribution.

The flux distributions were also computed at no-load in the two auxiliary airgaps

at both ends of the machine at locations, z = 5.13 cm and z = 7.72 cm. These

distributions are plotted in Figure (7.3.9) over two-pole pitches. Notice that the

location, z = 5.13 cm, which is closer to the rotor pole face than z = 7.72 cm,

exhibits a more modulated (nonuniform) flux density profile, despite the fact that

the auxiliary airgap is uniform in nature. Both flux distributions are positive, which

indicates a radially outward flux density orientation across the auxiliary airgap and

into the end-bell. Once more, even in the auxiliary airgap, there is a lack of axial
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symmetry in the magnetic field, which is a further indication of the 3D nature of

that field. Figure (7.3.10) contains the flux density profiles at z = -5.13 cm and

z = -7.72 cm, which are identical in shape to those in Figure (7.3.9), except for

a reversal in sign, which indicates a radially inward radial flux density orientation

across the auxiliary airgap at the opposite end of the machine.

A typical quantification of the profile of the flux flow in the rotor shaft is shown

in the longitudinal cross-section of Figure (7.3.11). One can easily observe that the

radial outward flow from the rotor surface is not exclusively in the main airgap. The

rotor shaft is seen to act like a manifold from and into which magnetic flux leaves

and enters. Again, this is a further manifestation of the 3D nature of the magnetic

field.

7.4 Advantages in the Computation Cost

- A Comparison with the Global MVP

formulation

The results of the MVP-MSP solution method were found to be accurate, reliable,

and insensitive to the choice of grid geometries. In the 14.3 kVA MLA problem,

the total number of second-order elements in Subregion (1-a), for one of the field

coils, is 3,888, leading to a number of unknown RMVP components of 11,664. The

total number of second-order elements in Subregion (l-b), for the armature region, is

11,880, leading to a number of unknown RMVP components of 34,776. Notice, the

RMVP solution is a linear computation without involvement of any iterative process

related to magnetic material saturation. Also, the RMVP solution is only carried out

once for a given machine design geometry. In this example 14.3 kVA MLA problem,

the total cpu time required by the Cray YMP super-computer in solving the RMVP

problems is less than 120 seconds.

The major part of the magnetic field computation in the MVP-MSP method lies

in the global MSP computation using the global first-order tetrahedral finite element

grid. The total number of unknowns in this global MSP computation is 20,112.

The ICCG method, reference [45], was used throughout in solving the systems of

simultaneous algebraic equations resulting from the 3D-FE analysis. The cpu time
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required by the Cray YMP super-computer for one linear MSP solution (without

magnetic saturation) is about 18 seconds. The average cpu time required by the

Cray YMP super-computer for the nonlinear MSP computation using the Newton-

Raphson iterative procedure is less than 240 seconds for a given rotor position and a

given set of field excitations. The computation size and cpu times mentioned above

for the 14.3 kVA MLA problem are listed in Table (7.4.1).

In contrast to the MVP-MSP solution method, the global first-order MVP FE

formulation and solution did not succeed in this MLA problem. The investigation

using the first-order MVP formulation was carried out on the same 3D-FE grid as

that used in the combined MVP-MSP solutions. As shown in Table (7.4.1), using

this 3D-FE grid leads to a global system of equations with approximately 57,900

unknowns. This author found the computed magnetic field results to be dependent

upon the particular grid geometries used in obtaining the solutions. This dependence

was found to be due to the grid ill-conditioning of the first-order FE grid as explained

earlier in Chapter 2 of this dissertation. This implies that in order to obtain an

accurate result from the global MVP solution method with first-order elements, one

has to use a much denser grid than that presented in Chapter 6.

Meanwhile, as shown in Table (7.4.1), solving the global system resulting from

the global MVP method for one linear solution (without magnetic material satura-

tion), using the ICCG method [45], required approximately 150 seconds of cpu time

from a Cray YMP super-computer. This leads to an estimate of a total cpu time of

2,100 seconds (35 minutes) of the Cray YMP super-computer to compute the problem

including magnetic material saturation at one rotor position. If one uses a denser grid

to improve the accuracy of the results as discussed above, the required cpu time can

be much higher than those listed in Table (7.4.1). Notice that for the whole task of

the performance prediction of the MLA. one will be required to repeat such nonlinear

3D-FE field computations for many times (more than one hundred repetitions for dif-

ferent rotor positions and current excitations). Therefore, under the present status of

super-computer state of the art, this approach requires unacceptably large amounts

of cpu time.

The above discussed computation sizes and required cpu times for the global

MVP method and the combined MVP-MSP method are listed side by side in Table

(7.4.1). It is obvious that one of the main accomplishment of this work is the substan-

tial savings in computer cpu time, which can be achieved by use of the MVP-MSP
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Table (7.4.1): Required Cray-YMP Super-Computercpu Time for the Global
Magnetic Field Computation of the 14.3kVA MLA

Global MVP

Method"

MVP-MSP

Method

Total

Elements

113,660

113,660

Total

Nodes

20,600

20,600

Total

Unknowns

57,900

20,112

MVP Method" -- Curl-Curl MVP FE Formulation Using

First-Order Elements

Cray YMP cpu Time

(at One Rotor Position)

Linear

Solution

150 Sec.

18 Sec.

Nonlinear

Solution

35 Min.

4 Min.
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method instead of the global fist-order MVP approach.
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Chapter 8

MLA Open-Circuit and Short-Circuit

Test Simulations

The combined MVP-MSP method of computation of 3D magnetic fields was used for

global 3D field analysis and machine performance computations, under open-circuit

and short-circuit conditions for the example 14.3 kVA MLA. In this chapter, the

formulations and results of simulation of gILA open-circuit and short-circuit tests are

given in detail.

The computed voltages and currents under these machine test conditions were

verified and found to be in very good agreement with corresponding test data. These

computer simulated results have automatically included all the effects of the 3D field

distribution, axial, radial and tangential, throughout the whole magnetic circuits of

such MLAs. Through the use of the global 3D-FE magnetic field computations,

these results included the effects of the magnetic saturation in the iron core as well

as armature end-turn effects. This agreement between simulation and test results

confirms the validity and soundness of the combined MVP-MSP solution method for

3D magnetic field computations in such types of MLAs.

In addition, results of the use of this modeling and computation methods in the

study of a design alteration example, in which the stator stack length of the example

alternator is stretched in order to increase voltage and volt-ampere rating, are given

in this chapter. These results demonstrate the inadequacy of conventional 2D-based

design concepts and the imperative of use of this type of 3D magnetic field modeling

in the design and investigation of such machines. This is a further confirmation of the

need for such 3D magnetic field computation tools in analysis and design of the MLA

class of machines, as well as any other machines involving substantial components of
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axial flux flow side by side with conventionalradial and tangential flux flow.

8.1 Computation of MLA Winding Inductances

from 3D Magnetic Field Solutions

Consider the 14.3 kVA MLA subject of this investigation. There are four distinct

windings in this machine. Namely, these are the a, b, and c armature phase windings,

as well as the field winding, f, see the MLA winding schematic in Figure (8.1.1), and

the MLA cross-sections in Figure (7.1.1).

It was shown in earlier work by Nehl and Demerdash [18, 79] that the apparent

inductance terms (L = A/i) can be expressed as second order partial derivatives of

the stored magnetic energy, ti T, in such a device as the MLA at hand. That is, for

the inductance term, Ljk, one can write:

02 W

Ljk- OijOik (8.1.1)

where, in general j=l, 2, ..., n, in this case j=a, b, c, and f,

in general k=l, 2, ..., n, in this case k=a, b, c, and f.

The stored magnetic energy, W, can be calculated at any given machine operating

condition of the MLA. That is, at a given set of winding currents, i_, ib, ic and i I. and

a given rotor position angle, 0, from a 3D-FE magnetic field solution. Specifically, the

winding inductance computations take place in Step (6) of the flow chart of Figure

(7.2.1) of Chapter 7, following the complete 3D field solution, which yields the quies-

cent field solution point for a given rotor position. The energy perturbation process

takes place along the apparent permeability line in each finite element throughout the

magnetic circuit, see Figure (8.1.2). For details on the process of winding current -

stored magnetic energy perturbation to compute winding inductances from magnetic

field solutions, references [1S, 79] should be consulted.

For computation of the self inductance of the jth winding, the current in this

winding is increased to (ij +Ai3), and decreased to (ij-Aij), respectively. The energy

stored in the magnetic fields corresponding to these two current perturbations, (ij +

Aij) and (ij -Aij), are computed. This yields the stored energy result W(il, i2, ..., it+

Aij, ...) which will be referred to as IV(ij + _ij), as well as the result I'V(il, is .... , ij-

206



¢

Figure (8.1.1) Schematic of the 14.3 kVA MLA Armature and Field Windings
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Aij, ...) which will be referred to as W(i s - Ais). Once these energy perturbations

are obtained, the apparent self inductance, L3_, can be computed as follows [18, 79]:

W(ij + 2xis) + W(ij - 2xis) - 2W

Lis = (Aij)2
(8.1.2)

In a similar fashion, for computation of the mutual inductances between wind-

ings, j and k, one computes the 3D magnetic fields and corresponding energies

of the following current perturbations: (i s + Ai s,ik + Aik), (i s + Ai s, ik -- Aik),

(i s -- Ai s, ik + Aik), (i t -- Ai s, ik -- Aik). These corresponding energies are namely

the following: W(ij + Ai s, ik + A/k), W(ij + Aij, ik - Aik), W'(i s - Aij, ik + Aik),

W(is-Ais, ik--Aik). Once these four energy perturbations are obtained, the apparent

mutual inductance, Ljk, can be computed as follows [18, 79]:

Ljk = [IV(i s + _ij, ik + -_ik) -- ll'(ij + _is, ik - 2Xik)-

W(ij - Ais, ik + Aik) + IV(ij - Ai s,ik - _ik)]/(4.SijAik) (8.1.3)

The energy perturbation approach summarized above was used repeatedly to

obtain a complete tabulation of all these 14.3 kVA MLA winding (self and mutual)

inductances over the entire (2re electrical radians) 360 ° electrical cycle of rotor posi-

tions. Thus all machine winding inductances were determined as a function of the

rotor position angle, 0, see the rotor position command of Step (5) in Figure (7.2.1)

of Chapter 7, including all the significant harmonic contents of these inductances

arising from armature slotting, rotor saliency-like effects, effects of magnetic circuit

saturations, etc. This process was used to obtain the various inductances at rated

voltage, as well as lower and higher than rated voltage conditions. These apparent

self and mutual inductances of the a, b, c, and f windings are as follows:

1) Armature phase self inductances; L_(0), Lbb(O), L_(0),

2) Armature phase to phase mutual inductances; L_b(O) = Lb,(O), Lbc(O) =

t b(o), L o(O)=

Field winding self inductances; LII(O),

Field winding to armature phase mutual inductances; L,_.t(O) = LI_(O),

Lib(O) = Lbi(O), Lie(O) -" Lc](O).

Three sets of computed inductances under open-circuit test condition are pre-

3)

and 4)
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sentedherein this section. The first level of field excitation 980 A T was chosen in order

to obtain a case (1) under which the open-circuit voltage is near the rated value, and

hence there are only moderate magnetic saturation effects throughout the magnetic

circuit of the example MLA. The second level of field excitation 500 A T was chosen to

obtain a case (2) under which there is almost no magnetic saturation throughout the

magnetic circuit of the example MLA. The third level of field excitation was chosen

to obtain a case (3) under which there are substantial levels of magnetic saturation

throughout the magnetic circuit of the example MLA. A total field excitation mmf of

3000 AT was chosen for this purpose, which is about 3 times the necessary excitation

mmf needed to produced rated open-circuit voltage (at no-load).

For the 980 AT field excitation of case (1), the self inductance of the armature

phase (a) winding, L_(0), is shown in Figure (8.1.3) as a function of the rotor position

angle, 0, in electrical degrees. Also, shown in the same figure is a tabulation of the

harmonic decomposition of the self inductance, L_(0), so that one can use the table

to express this inductance in a Fourier series as follows:

2O

L_(O) = Ao + __, A,,Cos(nO - _,,,) (8.1.4)
n=2,4,

where, n is the harmonic order 2, 4, ..., 20, and ,4o is the dc (average) component

given in the table in Figure (8.1.3),

An is the amplitude of the nth harmonic component of the inductance

in mH,

and ',_,_ is a phase angle of the nth harmonic component in electrical radians.

Similar expressions can be written for Lbb and Lcc, by replacing the rotor position

angle, 0, by (0- 2rr/3), (0- 4rr/3), for phases (b) and (c), respectively.

Meanwhile, for the 980 AT field excitation of case (1), the mutual inductance

between the armature windings of phases (a) and (b), L=b(O), is shown in Figure

(8.1.4) as a function of tile rotor position angle, 0. Also, shown in the same figure is

a tabulation of the harmonic decomposition for that inductance, so that one can use

the table to express it in a Fourier series as follows:

2O

L=b(O) = Ao + _ A,_Coa(nO - g_',_) (8.1.5)
n=2,4,
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where, A0, A,_ and ¢,_ are as defined above. Again, similar expressions to Equation

(8.1.5) can be written for Lbc=Lcb, and Lc,,'--L,_, by replacing the rotor position angle

0, by (0- 27r/3), and (0-4_r/3), for the mutuals between b and c, and between e and

a, respectively.

The self inductance of the excitation field winding, LII(O), is given as a func-

tion of the rotor position angle, 0, in Figure (8.1.5), for case (1) with 980 AT field

excitation. Again this inductance, LII(O), can be expressed by a Fourier series type

expression identical in nature to that given in Equations (8.1.4) and (8.1.5). The

Fourier expression coefficients are given in the table of Figure (8.1.5). Notice that

only the 18th harmonic component exists in this self inductance. This is directly a

result of the fact that the number of slots per pair of poles is 18.

The mutual inductance between the field winding, f, and the phase (a) armature

winding, L_.t(O), is given in Figure (8.1.6) as a function of the rotor position, 0. This

is again for case (1) with 980 AT of field excitation. Also, shown in the same Figure

(8.1.6) is a tabulation of the harmonic decomposition of that mutual inductance, so

that one can use the table to express it in a Fourier series form as follows:

19

L:_(O)=L_I(O)= _ a,_Cos(nO-_;,,_) (8.1.6)
n=l,3,

where, An is the amplitude of the nth harmonic component in H, for n=l, 3, ...,

19 and _,_ is a phase angle of the nth harmonic component in electrical radians.

Again, similar expressions to that in Equation (8.1.6) can be written for L.rb=Lb! and

L:c=Lc:, by replacing the rotor position angle, 0, by (0 - 2r./3), and (0 - 4_'/3), for

L:b and L.t_, respectively.

The profiles and harmonic decompositions for this set of inductances, Laa(O),

L_b(O), L:I(O), and Lp,(O), were also computed for case (2) of 500 AT, and for case

(3) of 3000 AT of field excitations, to assess the impact of magnetic saturation of

the magnetic circuit of the example MLA on the magnitudes and profiles of these

inductances. The results are given in profile in Figures (8.1.7) through (8.1.10) for

L_,,, L_b, L::, and L/_, respectively. Upon examination of these profiles, one

can see as expected the considerable reduction in the values of these inductances as

the magnetic circuit of this example 14.3 kVA-MLA is driven into higher levels of

magnetic saturation.
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The main incentive for computation of the apparent winding inductance terms

from energy perturbation considerations is to avoid having to compute various wind-

ing flux linkages from the resulting extremely complex 3D magnetic field distributions

throughout the various turns and coils of a winding. This is an extremely difficult

(if not impossible) task, particularly in the presence of the very complex topologies

of the 3D-FE grids which have to accompany such 3D solutions. Furthermore, it is

far easier to process scalar quantities such as stored magnetic energy, rather than

processing 3D vector quantities such as the flux density field, and integrating it over

surfaces of 3D nature to obtain flux and flux linkages, including partial flux linkage

effects.

Once these apparent self and mutual inductance terms of the windings are ob-

tained for this type of MLA, the a, b, c, and f winding flux linkages, ha, Ab, ,\c, and

AI, can be expressed in terms of the winding currents and apparent inductances as

follows:

_b

Ac

LQ_2

Lca

L t,_

Lab L_ L_f

Lbb Lb_ L<:

L_b L= L_:

L.tb L:c L.t:

la

Zb

Zc

(s.1.7)

In compact matrix notation one can rewrite Equation (8.1.7) as follows:

where, A is the vector of winding flux linkages,

L is the matrix of apparent winding inductances,

and Z is the vector of winding currents.

These apparent inductance parameters of the a, b, c, and f windings of an MLA

can therefore be computed, at any desired set of currents, and any corresponding

rotor position, using the present 3D-FE method based on the combined MVP-MSP

formulations, see the flow chart of Figure (7.2.1). The results of such parameter

computations were used to calculate the open-circuit and short-circuit characteristics

of the example 14.3 kVA MLA as described next.
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8.2 Computation of the Open-Circuit Voltage

Characteristics and Waveforms

As stated earlier, because of the intrinsically 3D nature of the magnetic field in such

MLAs, the voltages induced in the armature phase windings were directly calculated

from the derivatives of the flux linkages, )%, )%, and )%, of the armature phase wind-

ings. These flux linkages were in turn calculated in terms of the apparent winding

inductances which were computed from 3D field solutions, and the a, b, c and f

winding currents as stated above in Equation (8.1.7).

It must be pointed out that the full impact of the 3D magnetic field, includ-

ing its effects within the end-turn zone, as well as the impact of the peculiar rotor

geometry, stator slotting and the axial nature of the flux flow on both ends of such

MLAs, are incorporated in the armature flux linkage calculations through the ap-

parent inductance terms in Equation (8.1.7), which are computed from 3D-FE field

solutions. This includes the full impact of magnetic saturation throughout the various

iron portions of the magnetic circuit, and the full 3D impact of the magnetic circuit's

configuration.

Accordingly, under open-circuit (no-load) conditions, the phase (a) open-circuit

(oc) line to neutral voltage, v_(oc), which equals the no-load induced emf in phase

(a), ¢_, can be expressed as follows:

d,k_ d(L_:i:) dL_: L di:
= = - (_)i: + _:(--_) (8.2.1)vo(oc)= eo at

which can be rewritten as follows:

dL_: dO di:
v_(oc) = e_ = (--_)(-_)i: + L_:(-_) (8.2.2)

where, (dO/dt) = _, is the instantaneous speed of the rotor in electrical radians per

second.

Hence, the open-circuit line to neutral voltage for phase (a) can be expressed

as follows:

v,(oc) = e, = _i:(dd@) + L_/(@) (8.2.3)

221



Meanwhile, the field excitation current, is, under open-circuit no-load conditions is

related to the field winding's input terminal voltage, tV, by the following:

dNf __ rli/ +
Uf -_- rfif -4- d---i- dt

(s.2.4)

That is,

dL// dO . di/
V/ "-" r/i/ "4- ("'-_)(_'_')Zl + LSS(--_)

Hence,

dif . ri ( w dL H-27 = -ty- j + t.rs)(-g-)]is + (s,2,5)

Solution of the differential Equation (8.2.5) subject to the proper initial conditions

yields the instantaneous value of the field current and its derivative at the correspond-

ing rotor position. In this work the field winding was energized from an ideal voltage

source, v S.

For a value of vS = 6.83 V, the corresponding field current profile is given

in Figure (8.2.1), which yields a total field excitation mmf of 980 AT. This is the

excitation which was used in the 3D-FE magnetic field analysis to obtain the field

winding inductance given in Figure (8.1.5). These conditions yield an open-circuit

line to neutral voltage waveform, v_(oc) as given in Figure (8.2.2). Also, given in

the same Figure (8.2.2) is the corresponding oscillogram of v_(oc) under the same

open-circuit test conditions. Notice, the almost identical nature of the profile of the

computed voltage waveform and the test voltage oscillogram. The peak value of

the computed voltage waveform is 180 V, in comparison to a peak value of almost

175 V for the voltage oscillogram. Hence, the computed open-circuit voltage is not

only in agreement with the test voltage profile, but also the magnitudes are in good

agreement.

The validity of the computed open-circuit voltage profile is a direct indicator

of the validity of the computed winding inductance profiles, which resulted from the

computed 3D magnetic fields using the combined MVP-MSP solution method. A

harmonic breakdown of the computed open-circuit voltage waveform for v_(oc) and

its corresponding open-circuit test oscillogram is given in Table (8.2.1). Incidentally,

a photograph of the example 14.3 kVA MLA during laboratory testing is displayed
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Table (8.2.1): Comparisonof Computedand Test
No-Load emf Harmonics

Harmonic Contents of Open-Circuit Voltage

Order Amplitude A. Amplitude A.

n From 3D-FE (%) From Test (%)

1 100.0 100.0

3 0.038 0.021'

5 2.734 3.087

7 1.971 2.070

11 0.501 0.755

13 0.767 1.087

17 1.529 1.859

19 1.415 2.119
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in Figure (8.2.3).

The sameprocedurewasrepeatedin the computationof the line to neutral open-

circuit voltage waveform,from 3D magnetic field solutions, at various field winding

excitations. The correspondingrms valuesof the open-circuit voltageswereobtained
from thesecomputed waveforms. Thesevalues are plotted in Figure (8.2.4) and
shown by the squaremarkers. The sameFigure (8.2.4) contains a plot of the rms
open-circuit test voltageversusfield excitation mmf, excluding the effectsof residual

magnetism(permanentmagnetism). Again, very good agreementbetweencomputed
and experimental valuesof the open-circuit voltage is evident. This is a further
strong evidenceof the validity of the combinedMVP-MSP method of computation

of 3D magnetic fields by FE techniques,in the simultaneouspresenceof the strong

3D nature of the magnetic field and substantial magneticcoresaturation.

8.3 Computation of Steady-State Short-Circuit

Characteristics and Current Waveforms

In order to compute the steady-state short-circuit (sc) characteristics of MLAs, con-

sider the following equation which governs the relationship between the armature and

field windings' terminal voltages, v_, vb, v,, and v/, as well as the flux linkages, A_,

_b, _, and hi:

_a

Vb

'0 C

v/

r_ 0

0 rb

0 0

0 0

0 0

0 0

rc 0

0 rf

I
is A_

I

ib [ d Ab

+d_• I
zc I Ac

i/ ] )kf

(8.3.1)

where r_, rb, and r_ are the armature phase resistances, and r/ is the field winding

resistance. Recall that the flux linkages are related to the armature and field wind-

ing currents by Equations (8.1.7) and (8.1.8). Accordingly, Equation (8.3.1) can be
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Figure (8.2.3) The 14.3kVA MLA Under Test
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rewritten in compact matrix form as follows:

--tA
V=R'I+ !t_ (8.3.2)

where, V is the voltage vector, / is the current vector, A is the flux linkage vector,

and R is the winding resistance matrix. Meanwhile, from Equation (8.1.8), one can

express the current vector, / in terms of the flux linkage vector, A, as follows:

/ = L -x'A (8.3.3)

Substituting for _/from Equation (8.3.3) into Equation (8.3.2) and rearranging yields

the following:

d

2S(5) = -R(L-'). 5 + E

or

= -_R(L-_) •,'5+ _:_2' (8.3.4)

Solution of the state model Equation (8.3.4) in terms of the MLA winding flux

linkages, and subsequent use of Equation (8.3.3), yield the flux linkage vector, A,

and the current vector, _/. Under three phase to neutral short circuit conditions

va = Vb = t,c = 0, the state model in Equation (8.3.4) can be rewritten in expanded

form as follows:

---- m

_c

r_ 0 0 0

0 rb 0 0

0 0 rc 0

0 0 0 r!

L,,,, L,,b L,,_ L_ :

Lb,, Lbb Lb_ Lb:

L_ L_b L_ L_j

L:_ Lib L:_ L::

-1

/_a

Ab

_c

),:

+

0

0]
0I

I

(8.3.5)

Numerical solution of the state Equation (8.3.5) yields the MLA's windings' flux link-

age vector, A,c, under short-circuit conditions, from which the corresponding current
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vector, Lc, is obtained, using the A - _/relationship in Equation (8.3.3). Notice that

the MLA windings' apparent inductance matrix, L, is a function of the armature and

field currents, as well as the corresponding rotor position.

Implementation of the numerical solution of Equation (8.3.5) governing the

MLA's characteristics under steady-state short-circuit conditions can best be under-

stood by means of the algorithms' steps outlined in Figure (8.3.1). Notice that solu-

tion of Equation (8.3.5) is coupled to the 3D magnetic field and winding inductance

computation and 3D field effects on the steady state short-circuit characteristics. The

algorithm can be explained as follows:

Step (1): Obtain the profiles of winding currents, ia, ib, ic, and i:, by the state

space model, Equation (8.3.5), using unsaturated inductance values obtained

under no-load conditions.

Step (2): Compute the 3D magnetic field throughout the MLA magnetic circuit

to obtain a set of updated inductances at a series of rotor position angles covering

360 ° electrical. In this step, the excitation currents of the magnetic field model,

namely, i_, ib, i_, and i: corresponding to a given rotor position must be taken

from the current profiles of Step (1), or from the updated current profiles of

Step (4). Also, in this step full account of magnetic nonlinearity must be taken

into the 3D-FE computations to include any possible effects of magnetic circuit

saturation on the MLA inductances.

Step (3): Using updated inductance values from Step (2), re-compute profiles

of ia, ib, ic, and if through numerical integration of the state space model in

Equation (8.3.5).

Step (4): Check whether the change in the rms values of i_, ib, ic, and il from

the previous iteration is _< 0.5 per cent. If "No", use the updated current profiles

to begin a new iteration, that is go to Step (2). If "Yes", output desired results,

stop.

The steady-state part of the solution of Equation (8.3.5), using the algorithm

described above yields the steady-state short-circuit armature currents and charac-

teristics of a given MLA at a given field excitation voltage, v I. The steady-state

short-circuit waveforms for ia, ib, and i¢ were obtained at a field excitation mmf of

980 ATfor the 14.3 kVA MLA example, and are shown in Figure (8.3.2-a,b,c), respec-

tivelv. The corresponding field excitation current profile is given in Figure (8.3.3).

Notice the presence of a sustained ripple effect in the field winding's current profile,
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caused by the rotor's peculiar magnetic circuit configuration as well as stator core

slotting.

These simulations of the steady-state short-circuit conditions were repeated for

various values of field excitation voltage (various values of field mmf), and the result-

ing steady-state rms values of the armature short-circuit current were plotted versus

the total field mmf. These results are shown by the square markers in Figure (8.3.4).

Also plotted in Figure (8.3.4) are the results of an actual steady-state short-circuit

test which was performed earlier [3] on the example 14.3 kVA MLA excluding the ef-

fect of residual magnetism (permanent magnetism). These test results compare very

favorably, with the 3D-FE based computation of the steady-state short circuit char-

acteristic. This is a further evidence of the validity and soundness of the short-circuit

model of Equation (8.3.5), and more importantly, it validates the combined MVP-

MSP based 3D-FE method of computing the magnetic field and winding inductances

for performance calculations in this type of MLAs.

Graphical representations of the flux density', "B, by means of vector arrows of the

flux density distributions along a longitudinal cross-section in the 14.3 kVA MLA, and

perpendicular to the axis of rotation, are shown in Figures (8.3.5-a,b) as well as (8.3.6-

a.b) for the no-load and short-circuit conditions, under the same field mmf of 9S0

AT. As can be seen and expected from examination of the B arrow orientations, the

main flux crosses the main airgap into the armature region under no-load, while this

main flux is largely, deflected from the armature region under short-circuit conditions.

This is a direct result of the strong demagnetizing armature reaction (mmf) which is

expected under short-circuit conditions. These graphical displays of the B field are

further confirmation of the soundness of the 3D field solutions at hand.
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(a) No-Load Condition IB'I - 1.4 Telsa

(b) Short-Circuit Condition TJ. I_'1 -- 0.073 Telsa

Figure (8.3.5) Flux Flow Pattern Along a Longitudinal Cross-Section
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8.4 Computation of Synchronous Reactances of

the Example 14.3 kVA MLA from Test and

3D-FE Based Results

Conventional synchronous machine theory [88], and standard methods of calculation

of direct-axis synchronous reactance, Xd, enable one to state the following:

E(oc) (8.4.1)
xd(sc)- I(_c)

where E(oc) is the open-circuit voltage for a given field excitation current, 1I, and

I(sc) is the steady-state short-circuit armature current obtained at the same field

excitation, If, associated with E(oc).

The open-circuit and short-circuit test data of Figures (8.2.2) and (8.3.4) yield

values of E(oc) and I(sc) of 67.0 volts and 14.0 amperes, respectively, at a field

excitation mmf of 500 AT, which is a value of field mmf that is well within the

unsaturated range of the magnetic circuit of the example 14.3 kVA MLA. Hence,

using Equation (8.4.1) results in a direct axis synchronous reactance, xd = 4.78 .Q

(test). Meanwhile, the 3D-FE magnetic field solutions and the resulting computed

open-circuit and short-circuit characteristics yield values of E(oc) and I(sc) of 61.8

volts and 14.21 amperes, respectively, at the same field excitation of mmf of 500 AT.

Hence this results in an x_ = 4.35 _ (3D-FE). The two values of Xd of 4.78 _ and

4.35 _ are well within 9% in the normal range of combined instrumentation error, and

variations in the B - H characteristics of the rotor and stator iron cores which result

from heat treatments associated with the bimetallic rotor manufacturing process.

Another method of computation of the direct axis and quadrature axis syn-

chronous reactances, xd and xq, from the results of the 3D-FE field solution and

winding inductance computations is now presented and used for further comparison.

This method is based on the well-known conventional Park's d-q theory and trans-

formation [88]. This theory is based on the inherent d-q transformation assumption

that the armature mmfs, field mmf, and resulting flux density waveforms produced

by each winding a, b, c, and f, in a synchronous machine are sinusoidally distributed

around the circumference of the airgap with no harmonics. Park's theory assumes

that saturation is neglected. This is of course not the case for the 14.3 kVA MLA.
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Nevertheless,idealizedd-q theory will beusedherefor the sakeof gaining somephys-
ical insight into the numbers. In this d-q theory the self and mutual inductances,
L,,.(O) and L=b(O), can be expressed as follows [881:

and

L_(O) = L,_ + L,vCos(20) (8.4.2)

L,,b(O) = -L,.,.,.,_ + L,-,,vCos(20- 2_'/3) (8.4.3)

Comparing Equation (8.4.2) with Equation (8.1.4) one can see that the following can

be stated (see the tabulation of harmonic breakdown of L,_,(O) in Figure (8.1.7) for

the case of 500 AT field excitation):

Ls_ = A0 = 0.3850 mH and L,t. = A2 = 0.0043 mH

Meanwhile, comparing Equation (8.4.3) with Equation (8.1.5) one can see that (see

the tabulation of harmonic breakdown of L_,t,(O) in Figure (8.1.$) for the case of 500

AT field excitation):

Lm_ = -A0 = 0.1841 mH and L,_. = A2 = 0.0030 mH

From the algebraic development of Park's d-q transformation, and the theory sur-

rounding it [88], it is well known that the direct and quadrature axes synchronous

inductances can be expressed in terms of L,_,, Ls,:, Lm,_ and Lmv as follows:

Ld = (Lsa 4- Lma) + (1/2Lsv .4- Lmv) = 0.5743 mH (8.4.4)

and

(8.4.5)

(8.4.6)

Lq=(L,_, + L_,_)-(1/2L,, + L_,.,)=O.5640mH

Meanwhile,

xd = wLd = 2zfL,_ = 4.33 fl
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and

xq = ,_Lq = 27rfLq = 4.25 fl (8.4.7)

Certainly, the value of xa, computed from 3D-FE data and Parks formulation,

compares well with that obtained from 3D-FE data and the resulting open-circuit

and short-circuit simulations, which yield an xa = 4.35 fl.

Meanwhile, the La and Lq expressions in Equations (8.4.4) and (8.4.5) were also

applied to the open-circuit cases with 980 AT field excitation, and 3000 AT field

excitation, respectively. That is, the values of the self and mutual inductances of Ls_,

L_, Ls_, and L_v in Equations (8.4.4) and (8.4.5) are taken from the inductance

tabulations in Figures (8.1.3) and (8.1.4) for the case of 980 AT, and from the induc-

tance tabulations in Figures (8.1.7) and (8.1.8) for the case of 3000 AT, respectively.

The calculated values of xd and xq versus different field excitations are listed in Table

(8.4.1). As expected, the computed d-q type reactance values decreased as the higher

field excitations drive the magnetic circuit of the MLA into higher levels of saturation.

The above results certainly present further evidence on the soundness and validity of

the 3D-FE magnetic field computation programs, and the associated post-processors

which generate the necessary MLA parameters, and other performance characteristics

such as open-circuit and short-circuit simulations, etc.

8.5 Effect of Geometric Design Alterations on

Performance Characteristics from 3D-FE

Magnetic Field Computations

In this section, a demonstration of use of the 3D-FE magnetic field computation

program in the determination of the effects of magnetic circuit design changes (or

alterations) on the performance of MLAs such as the example 14.3 kVA unit is pre-

sented. This is done here through the calculation of the impact of an increase in

the axial stator core length from 4.19 cm to 5.33 cm, which is about 27% longer.

The rotor is also stretched correspondingly. Meanwhile, the radial dimensions such

as various diameters in the magnetic circuit and windings are kept constant at their

original values.
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Table (8.4.1): Effects of Magnetic Saturation on

d-q Type Inductances

Field Excitation Xd X_

500 AT 4.33 _/ 4.25

980 AT 4.21 f_ 4.12 f_

3000 AT 2.89 fl 2.75 fl

Computed by 3D-FE at No-Load Conditions
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The resulting open-circuit characteristic obtained from 3D-FE magnetic field
solutions, for the altered MLA design with a stator stack of 5.33 cm, is compared in

Figure (8.5.1) with the corresponding 3D-FE computed open-circuit characteristic of

the original 4.19 cm long stator core case of the 14.3 kVA-MLA. As can be expected,

the resulting increase in magnetic circuit reluctance of the altered MLA design is

in the portions of the magnetic circuit in which the predominant orientation of flux

flow is axial, consequent to the stretch of the stack by 27%. Only a modest increase

in the open-circuit voltage of about 8% to 9% is predicted. This is despite the fact

that the magnetic reluctance was reduced in portions of the magnetic circuit in which

the predominant flux orientation is radial and circumferential, such as in the stator

armature core and rotor pole area near the main airgap. The lack of proportionate

increase in the open circuit voltage is a further strong evidence of the 3D nature of

the magnetic field in the example MLA, in which flux flow orientations are a mix of

radial, axial, and circumferential directions in their nature.

If the magnetic flux flow was predominantly radial and circumferential, as the

case would be in generators with conventional rotor mounted radial field excitation

design, an increase of 27% in the stack length would have caused an increase of about

the same percentage in the voltage induced in the armature conductors for the same

main airgap radial height and same excitation field mmf. Thus, one can see the

effect of predominance of the axial flow portion of the flux path in precluding such

an increase (27%) in the armature induced voltage (only 8% to 9%)in this case.

Furthermore, radial flux density waveforms in the main airgap were computed

for a field mmf = 980 AT, at a location midway along the length of the stator stack.

that is at z =0. These flux density waveforms are shown in Figure (8.5.2) in the cases

of 4.19 cm and 5.33 cm armature stack lengths, respectively. Notice the reduction in

the flux densities for the longer stack length of 5.33 cm in comparison with those flux

densities for a stack length of 4.19 era. This is a confirmation of the predominance of

an axial flux flow nature in the magnetic field in this type of MLAs. These present

computer codes of the combined MVP-MSP method for solving the 3D magnetic

field in MLAs can be used further to vary other dimensions, slotting and winding

arrangements, as well as material characteristics, and assess their impact on the

performance of various MLA designs and performance characteristics. Thus, these

computer programs can serve as an excellent design tool in obtaining or searching for

the best possible designs of such MLAs. Use of this method and resulting computer
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programs, in computation of the performance of such MLAs under load conditions,

is demonstrated next.
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Chapter 9

MLA Load Performance Simulations

Because of the periodic, yet nonsinusoidal nature of the flux distributions and wind-

ing inductances with substantially high harmonic content, the anticipated armature

currents and terminal voltages of the MLA under load conditions are periodic, yet

nonsinusoidal in their nature, when such an MLA is supplying an isolated 3-phase

static load. Hence, the resulting electromagnetic torque contains substantial ripples,

which cannot be ignored in vibration considerations associated with the design of

the space station's structure. Consequently, steady-state frequency-domain ac pha-

sor concepts are not used in the determination of load performance characteristics of

such MLAs, which result in a uniform torque with no ripples, and are only based on

pure sinusoidal voltages and currents. Thus, as stated earlier in Section 1.3, the d-q

theory and accompanying phasor diagrams, stemming from Park's transformation,

which are based on pure sinusoidal spatial flux and mmf distributions cannot be the

basic tool for use in this work. The natural abe phase windings' frame of reference

was chosen to form the basis of the present method.

The method of determination of the periodic nonsinusoidal armature currents

and voltages (load characteristics) is based on obtaining the steady-state (forced

solution) portion of the current-voltage governing differential equations (state model).

It is well known that the damper effects, due to induced eddy currents in machines

with solid metallic rotors or damper windings, play a significant role only in shaping

the solution of the differential equations during the subtransient and transient periods.

Therefore, the steady state periodic nonsinusoidal solution of the MLA's state model

was obtained excluding rotor damping. Only R-L type loads are included in the results

presented in this chapter. The MLA-load system schematic is shown in Figure (9.0.1).

The well known consumer notation (or load) is used throughout this investigation.
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9.1 Determination of Periodic Nonsinusoidal

Steady-State Voltage and Current

Waveforms

The main interest lies in the sustained steady-state periodic nonsinusoidal (or forced)

solution of the state model equations, which govern the instantaneous relationships

between the voltages and currents of the MLA armature and field windings under

load conditions. This set of governing differential equations can be written in compact

matrix form, using the consumer notation in terms of the voltages, currents and flux

linkages of the armature phase windings, a, b, and c, as well as the field winding, f,

as follows:

V = R,,.i + d(A,,) (9.1.1)

and

A., =L,, .Z (9.1.2)

or

I = L5 _ • A____ (9.1.3)

where, __Vis the vector of machine windings' terminal voltages,

I is the vector of machine windings' currents,

R,, is the machine windings' resistance matrix,

L,, is the machine windings' apparent inductance matrix, computed from

global 3D-FE magnetic field results using the combined MVP-MSP so-

lution method,

and A_..___is the vector of machine windings' flux linkages.

All these physical quantities, V,/, A,,, and L,,, are instantaneous values. It should

be emphasized that the effects of space harmonics and magnetic saturation under

load are fully included in the coefficients of the machine inductance matrix, Lm.

These apparent inductance coefficients were obtained from a set of successive 3D-

FE field solutions at rotor position angles which covered a complete 360°e. Each

one of these 3D-FE field solutions and corresponding inductance computations were
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obtained at theserotor positionswith their correspondingsetsof armature and field
currents. Notice that currentsare taken positive when flowing into the terminals of

the windingsof the MLA, Figure (9.0.1).

In expandedmatrix form Equations (9.1.1) through (9.1.3) canbe rewritten as
follows:
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(9.1 .,5)

or

i¢1
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if!

Lb_

Lca

Lab

Lbb

Lcb

Lfb
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Lbc

Lcc

Lye

Lay
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(9.1.6)

249



For a given set of terminal voltages, I__/ = [v_ Vb vc vy]', the state Equation (9.1.1) can

be rewritten using Equation (9.1.3) as follows:

I_ = Rm. (L_'.Am) +_Am (9.1.7)

or

__Am= - (__Rm"_L__)Am + _£ (9.1.8)

Equation (9.1.8) constitutes the state model of the MLA in terms of flux linkages.

Again, Lm is rotor position dependent (all significant space harmonics included),

including full impact of magnetic saturation. Meanwhile, Equation (9.1.3) relates the

flux linkages to the currents. In expanded form Equation (9.1.8) can be rewritten as

follows:

Abm

)_cm

Aym

rs 0 0 0

0 rs 0 0

0 0 rs 0

0 0 0 r I

L_o L_b Lac L_I

Lba Lbb Lbc LbI

Lca Lob Lcc Lc!

L]o Lib LI_ L N

-1

Ab
+

A_

Ay

Va

Vb

V C

v]

(9.1.9)

If a given MLA is connected to an isolated three phase Y-connected balanced

load of resistance, rl, and inductance, LI, per phase, see the network schematic in

Figure (9.0.1), the a, b, and c armature terminal voltages, v_, vb, and vc, can be

expressed in terms of the MLA's phase currents, i_, ib, and i¢, as follows:

Ca

Vb .

I

rz 0 0

=-I0 rl 0

I
I
/ 0 0 rl
k

ia Aal

d

I

(9.1.10)
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where

)%1

LI

= 0

0

0 0

ib

ic

(9.1.11)

Substituting for [v. vb vc]' from Equation (9.1.10) into Equation (9.1.4), and rear-

ranging gives the following:

v!

(r_ + r_)

0

0

0 0 0

(re + rl) 0 0

0 (r, + rl) 0

0 0 0 r]

ia

ib

ic '

i:

d

+ d--t

Ab

Ac

A:

(9.1.12)

where,
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(9.1.13)
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or

i1
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i.[
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I

),b
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(9.1.14)

Accordingly, the overall MLA state model equation in terms of the total flux linkages.

Aa, Ab, A_, and AS, including load effect, can be written as follows:
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--- m
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0
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(9,1.15)

Equations (9.1.13) through (9.1.15) constitute the main model of an MLA supplying

an isolated three phase balanced load. In compact matrix form these equations can

be rewritten as follows:

A= L. I (9.1.16)

I=L -1 -A (9.1,17)
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and

_= -R. L -1 .A+V (9.1.18)

Differentiating Equation (9.1.16) with respect to time yields the following:

= Z+ L. ] (9.1.19)

where, _ = (dL/dO) and w = dO�dr, from which it follows that:

_J= L-'. a_- £). z (9.1.20)

Equation (9.1.20) yields the derivatives of the currents, that is, (dia/dt), (dib/dt),

(die�dr), and (di//dt) from which the armature terminal voltages, v,, vb, and t,c can

directly be derived from Equation (9.1.10) and (9.1.11). Therefore, these voltages can

be computed from the armature currents, and their derivatives, as follows:

'_Qa

Ub

"_ c

rt 0

0 rj

0 0

0

1

0

rl

ia

ib --

ic

L_ 0 0

0 Ll 0

0 0 Lz

d i....A_
dt

dib

dt

2c

dt

(9.1.21)

In order to minimize the required computer CPU time to carry out the complete

numerical solution (integration) of the state model of the MLA, Equation (9.1.15).

well into the sustained periodic nonsinusoidal steady-state region, it was found that

an initial estimate of the rotor position angle, a0, is best obtained from a conventional

d-q phasor diagram under load, Figure (9.1.1). The angle, a0, is defined as the angle

at time, t = 0, subtended between the rotor's direct axis, d, and the axis of phase (a),

which is usually taken as the reference in conventional d-q phasor analysis as depicted

in Figure (9.1.1). Notice that consumer (load) system notation is used throughout

this investigation, including the phasor diagram of Figure (9.1.1). Under this system

of notations the main phasor diagram relationship can be expressed as follows:

i-7 = TI + r_7_ + jxqTq + jxfld (9.1.22)

253



Volts

Ref.
0

Axis (a)

Figure (9.1.1) Conventional Synchronous Machine d-q Phasor Diagram

(Consumer Notation)
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the variables, Va, la, EI, 7_ and 7q are defined in the phasor diagram of Figure

(9.1.1). The initial rotor position angle, ao, is therefore obtained in terms of the

power (or torque) angle, 6, as follows:

3r,

a0 = -_- + _ (9.1.23)

Accordingly, under steady-stateoperation, the rotor position angle,a, at any instant

in time, t,isgiven as follows:

a(t) = ao + a,,t (9.1.24)

where w is the rotor's steady-state (synchronous) speed in electrical rad/sec.

The amplitude of the excitation emf, El, leads to an initial estimate of the

necessary field excitation voltage, V.¢, as follows:

v_-E] (9.1.25)
I_ = r]If = r I _,L_j,_

where L_]m is the amplitude of the fundamental component of the armature to field

mutual winding inductance.

The above use of the d-q phasor diagram to obtain an estimate of the initial

conditions for the process of starting the computation of the 3D magnetic fields and

consequent MLA performance under load should not be interpreted as an endorsement

of the set of assumptions and simplifications underlying the d-q theory, but only

as an initial guess in a much more complicated numerical solution process. This

process and its accompanying algorithm developed here for the computation of the

global 3D magnetic fields in the MLAs as well as their winding inductances and other

characteristics, under load conditions, is described in the next section.
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9.2 Algorithm for Computation of the Global 3D

Field Distribution and Inductances as Well

as Load Performance

At the heart of this computer algorithm is the computation of the global 3D magnetic

fields in MLAs. The combined MVP-MSP method of global 3D field computation

using FE techniques constitutes the core of this analysis. In the application of this

combined MVP-MSP method to the MLAs, the 3D-FE solution volume is divided into

current-carrying MVP subregions, and a current-free subregion, as shown in Figure

(7.1.1) of Chapter 7. Details of the computer algorithm of the combined MVP-MSP

method applied to such MLAs were discussed in Chapter 7. The computational

steps used to obtain the machine parameters (inductances), and other performance

characteristics under load, from global 3D-FE field solutions, can best be described

by means of a detailed explanation of the flow chart, Steps (1) through (11), in Figure

(9.2.1). The steps of computation proceed as follows:

Step (1): Estimate the initial condition for the starting of the 3D magnetic field

and performance computation process.

(1.1) Given a three phase balanced load with a complex power, St = P_+j@
t Oat a line to neutral load terminal voltage, t<'l = IL/0 °, and load power factor

angle, 8z = Cos-I(P.F.), using consumer (load) notation throughout, compute

the load current 7t = I_/-¢__A from:

_ = PI + jQz = 3Vt_ = 3_I_Cos¢_ + j3l}ltSin¢l

(1.2) Compute a load equivalent resistance rl and a load equivalent induc-

tance per phase as follows:

r_ = (P_/3I_) fl/phase

and

L, = z,/w = Q_/(3I?w)

(9.2.1)

H/phase (9.2.2)

These are the load resistance and inductance per phase used in the MLA's state

model, Figure (9.0.1) and Equations (9.1.15) through (9.1.21), throughout the

iterative process of this algorithm.
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Figure (9.2.1) Flow Chart of MLA Load Simulation Procedure
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(1.3) The MLA's powerfactor angle,¢, and rms current per phase, I, are

accordingly given by

I = I_, ¢ = Ct (9.2.3)

Accordingly the phasor values of the a, b, and c phase currents of the MLA, ia,

ib and ic, are given by the following:

7o = ¢)

7b = I/Qr - ¢)- 2r/3 (9.2.4)

Ic = I/(r - ¢) - 4_-/3

(1.4) Use the direct axis and quadrature axis synchronous reactances, Zd

and xq, computed at rated voltage no-load in Section 8.4, in the conventional d-

q phasor diagram, Figure (9.1.1), to calculate the initial estimates of the d-axis

rotor position angle, a0, Equation (9.1.23), and the steady-state field excitalion

voltage, 1<7, Equation (9.1.25). Set the global iteration count, ITC, that is

ITC=I.

Step (2): Start a new global computation iteration. Set the time, t = 0.

Step (3): Compute the rotor position, that is , obtain the direct axis position

angle, cr = a0 + wt.

Step (4): Compute the instantaneous values of ia, ib, ic, il and vl, at this rotor

position angle, a.

If ITC=I, use the following

io = v ICo [ t + - ¢)]

ib = v_ICos[w_ + (r - ¢) - 2_r/3]

i_= vZ2ICos[wt + (7r - ¢) - 4r/3] (9.2.5)

i: = v_E:/wLalm

v! = Vy (from Equation(9.1.25))

I_f ITC-¢1, use the most recently adjusted value of v! from Step (7) of the

(ITC-1) global iteration, and obtain the instantaneous values of ia, ib, ic and
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i:, from the most recent output of the (ITC-1) global iteration current profiles,

corresponding to the present rotor position angle, a. Inject these instantaneous

currents into the proper locations in the 3D-FE global solution volume, Figure

(7.1.1).

Step (5): Compute the global 3D magnetic field distribution in the MLA, and

the corresponding winding inductances at the given rotor position angle, a,

using the combined MVP-MSP method, the computer algorithm of which and

its flow chart are given in Figure (7.2.1) of Chapter 7.

Step (6): Check whether the elapsed rotor position angle (a-ao) >__2r electrical

radians ?

IF No: Increment time; t = t + At, and Go To Step (3).

IF Yes: The profiles of MLA winding inductances covering a complete ac cy-

cle (2r: electrical radians) have been obtained. Thus the alternator's parameters

have been computed. Proceed to Step (7).

Step (7): Solve for the MLA's winding currents and terminal voltages using the

state model formulated earlier in Equations (9.1.15) through (9.1.21), in the

following order until steady-state winding current and terminal voltage profiles

are attained:

(7.1) Use Equation (9.1.15) to solve for the instantaneous values of the flux

linkages of the combined load - machine windings, -_a, Sb, $c, and )_:.

(7.2) Use Equation (9.1.14) to compute the instantaneous values of the

machine winding currents, io, ib, ic, and ij, from the instantaneous flux linkages,

_a, _b, It, and _:.

(7.3) Use Equation (9.1.20) to compute the instantaneous rates of change

of machine winding currents with respect to time. That is, compute dia/dt,

dib/dt, die�dr, and diy/dt.

(7.4) Use Equation (9.1.21) to compute the instantaneous values of the

armature phase windings' voltages, v,, vb, and v_.

If the rms voltages obtained from the steady-state voltage profiles of v=,

vb, and v_, are not within range of required values, Go To Step (8) for field

excitation adjustment.

If the rms voltages obtained from the steady-state voltage profiles of vo, vb,

and v,, are within range of required values, Go To Step (9).
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Step (8): Readjust the field excitation voltage, vf, in proportion to the deviation

of the rms values of armature voltages from required value. That is, multiply

the field excitation voltage, v f, by the ratio of the rated MLA terminal voltage

and the rms value of the terminal voltage obtained from Step (7). GoTo Step

(7).

Step (9): Compute the power angle, 6, of the phasor diagram of Figure (9.1.1)

from the latest simulation results, that is, the angle shift between the rotor

q-axis and the fundamental of the terminal voltage v, in the computed results.

Check whether the field excitation voltage vf and the torque angle 6 ob-

tained from Step (7) stopped changing from their respective values in the pre-

vious iteration, (ITC-1), i.e. normalized change _< 0.5 per cent.

If Yes, Go To Step (11).

If No, Go To Step (10).

Step (10): Re-calculate the initial rotor position angle, ao = (3r,)/2 + _, for

machine winding inductance and 3D magnetic field recomputations. Also, store

the computed steady-state profiles of ia, ib, and ic, for the inductance and

magnetic field recomputations.

Increment the global iteration count, ITC=ITC+I,

Go To Step (2).

Step (11): Steady-state solution for the prescribed load has been achieved. Out-

put and plot all desired MLA parameters and performance characteristics under

the given load condition. End of load case computations, Stop.

The above algorithm which combines the computation of the steady-state load

performance characteristics, in which the steady-state periodic nonsinusoidal arma-

ture voltage and current waveforms are obtained, together with their corresponding

global aD magnetic field distributions, was used in actual MLA performance calcu-

lations. The 3D magnetic field and load performance of the example 14.3 kVA MLA

was computed at rated load of 14.3 kVA, 0.75 lagging P.F. and over-rated load of 21.5

kVA, 0.75 lagging P.F., respectively. The results of these computations are given in

Section 9.4.
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9.3 The Method of Electromagnetic Torque Cal-

culation

The electromagnetic torque of the example 14.3 kVA MLA is computed based on the

machine terminal voltages and currents as well as the stored magnetic energy of the

MLA obtained from 3D-FE magnetic field computations. The terminal voltages and

currents are the results of the computer simulation procedure using the state space

model discussed in previous sections. Meanwhile, the stored magnetic energy can be

obtained from the results of 3D-FE computations at the stage of machine winding

inductance calculation as described in Step (5) of the flow chart in Figure (9.2.1).

The method is explained next.

Consider the energy conservation principle with regard to the MLA-load system

shown in Figure (9.0.1). The energy balance for the MLA under load can be stated

as follows:

Input) ( Input/ (Increase/Electrical + Mechanical = in Stored +

Energy Energy Energy

Energy

Dissipated

as Heat

Under the steady state load condition, the term "Increase in Stored Energy" m the

above expression only includes the increase in the stored magnetic field energy (f H •

d'B), for the reason that the electric field energy (fT. riD) in a rotating electric

machine is insignificant. The change in the stored magnetic energy during a very

short period of time, dt, is denoted here as dll'mog.

Meanwhile, the term "Energy Dissipated as Heat" in the expression of Equation

(9.3.1) includes the energy dissipations due to the machine windings' ohmic loss, and

iron core loss, as well as the mechanical friction and windage losses. At the present

stage of this investigation, the effect of iron loss on the electromagnetic torque of the

MLA is not included. Thus during the time, dr, the dissipated energy in the form of

heat, denoted here as dIl_m, can be written as follows:

•2 i}rt)dt dll')_dIVd,,, = (i2aro + i_rb +zcrc + + (9.3.2)

where, ia, ib, ic, and i: are the instantaneous values of the three phase armature

winding currents and the field current, respectively. Meanwhile, ra, rb, r¢, and r] are
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the winding resistancesof the three phasearmature windings and the field winding,

respectively. Here, Wjx,_ in Equation (9.3.2) is the energy dissipation related to

mechanical losses such as the bearing friction loss, and windage associated with the

rotational motion of the rotor, etc.

The term "Input Mechanical Energy" in (9.3.1), denoted here as dH_, for the

time, dt, can be expressed by the mechanical torque exerted on the MLA's shaft, Tin,

and the shaft angular speed, win, as follows:

dH_ = Tr,,a_,_dt (9.3.3)

Further, during the very short time, dr, the term "Input Electrical Energy" can

be expressed through the armature voltages and currents, as well as the field voltage

and current, as follows:

dive = (vai, + vbib + vcic + viii)dr (9.3.4)

where dW, is the notation for the input electrical energy during the time dr.

Accordingly, Equation (9.3.1) can be rewritten for the MLA steady state load

case as follows:

dIl_ + dIl',_ = dIt_a + dWdiss (9.3.5)

Substituting dit_is_ from Equation (9.3.2), dWm from Equation (9.3.3) and dI.t,_ from

Equation (9.3.4) into Equation (9.3.5) yields the following:

(v_i_ + Vbib q- vcic q- vyiy)dt + T_wmdt

= du o9 + (i o o+ + + i} j)et + (9.3.6)

Equation (9.3.6) can be re-arranged into the following form:

Tm(w,,,dt) - dlV.tt_,_ = dW,,,,g + (i_r_ + i_rb + i_rc + i}rl)dt

-- (Vaia + Vbib "b Vcic+ vfif)d[ (9.3.7)
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Dividing Equation (9.3.7) by (torndt),one obtains the following:

du<'<.,., i}rl)
dt )= _ _ )+ 1---(i2"r_+i_rb+zcrc+wrn

- ( 1--L)(v_i_ + vdb + vci_ + vlis)
torn

(9.3.$)

Notice, the two terms at the left hand side of Equation (9.3.8) are mechanical torques.

Under the steady state condition, the resultant of these two terms must be equal to

the negative of the electromagnetic torque generated in the MLA, such that the total

resultant torque on the MLA's shaft equals zero which yields a necessary condition

for the MLA to keep its constant rotor speed. Thus one can write the equation for

the electromagnetic torque, T,, as follows:

dll',_g 1 ._ .2 i}rlre = -(1)( /- + + ,crc + )
ton dt a:rn

1 . (9.3.9)+ --(t'_i_ + Vbi6 + t'dc + tvi])
la,27n

The term I t<'_og in Equation (9.3.9) can be obtained from 3D-FF _-omputations

at the quiescent points at the stage of machine inductance calculati .... ,s described

in Step (5) of the flow chart in Figure (7.2.1). These values are obtained as functions

of the rotor position angle, 0_, and can be expressed in a Fourier series as follows:

2O

lt',_g = .40 + _ A,,Cos()_O¢ - t_,,) (9.3.10)
n=2,4,

where An is the n-th harmonic component of the computed magnetic energy pro-

file versas rotor angle position, 0,, and vJ,,_ is the phase angle of the n-th harmonic

component of the torque. Consequently, the derivative of It',_g can be computed as:

dW.._,g dlYm.9 _o
_to_ - to,_'nA,Sin(nO,-_,_) (9.3.11)

dt dO_ 2,4,

The component of electromagnetic torque stemming from the change in the stored

magnetic energy, described as -(1/to,_)(dlVrn_9/dt)in Equation (9.3.9). can also be
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expressedin a Fourier series form as follows:

20 20

P _ nA,_Sin(nO_ - Cn)
T = w.--2-__ na,_Sin(nO_ - ¢,_) = _ 2,4,

'_rn 2,4,

(9.3.12)

where p is the number of poles of the machine. Thus, the electromagnetic torque

profile can be computed by the following:

1 .2 .2 i2jrl) l'-L(vaia vbib vcicro = + + ,c c+ + + + + viii)
Odm _Orn

2O

P _ nA,_Sin(nO_ - g,,_) (9.3.13)
2,4

In order to study the improvement on the accuracy of the torque calculation by

including the term related to the change in the stored magnetic energy, two methods,

Method #1 based entirely on Equation (9.3.13), and Method #2 using Equation

(9.3.13) without the term related to the stored magnetic energy, were applied to an

example torque calculation of the MLA rated load case. The results are shown in

Figure (9.3.1) and its accompanying table. One can see that both methods yield

the identical average torque value. However, as shown in Figure (9.3.1), the torque

profiles computed by Method #1 and Method 4#2 are not congruent. Also, as shown

in the accompanying table, there is noticeable difference in magnitudes and phase

angles of harmonic components between these two torque results. Therefore, in case

that there is a need of thorough investigation on the harmonic contents of the machine

electromagnetic torque profile, the method described in Equation (9.3.13) should be

used.

Because of the consumer notation system used in this research, the total elec-

tromagnetic torque is expected to be negative under a generator operating condition.

The physical meaning of the negative sign of the electromagnetic torque is that such

a torque opposes the rotor's direction of rotation. Results of torque calculation for

the MLA as well as other performance characteristics, under various load conditions,

are further presented in the following sections. The torque calculation is carried from

this point forward using Method #1 of Equation (9.3.13) above.
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Figure (9.3.1) Example Torque Calculations
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9.4 The MLA's 3D Magnetic Field Distributions

and Performance Characteristics Under Load

9.4.1 The 14.3 kVA, 0.75 Lagging Power Factor Rated Load

Case

The formulations and computer algorithm described in the above sections, were used

to compute the 3D global magnetostatic field distributions throughout the magnetic

circuit of the example 14.3 kVA machine, at a rated load of 14.3 kVA, 0.75 lagging

power factor (over-excited generator mode generating both Watts and Vars) at rated

voltage condilions. These 3D magnetic field computations were performed at 36 rotor

positions covering the 360% ac cycle, at a sampling rate every 10°e. The inherently

3D nature of the magnetic field distributions in this MLA example will next be

demonstrated by studying typical samples of the magnetic field distributions under

load.

The distributions of the radial flux density at various axially located (z - axis

locations) cross-sections, see Figure (7.3.4) of Section 7.3, for z = zo, and z = :t=z2

in the main airgap, and for z = =t:z3, as well as :t=z = z4 in the auxiliary airgaps, are

given next.

In the main airgap, the radial flux density waveforms, for one of the 36 rotor

position samples, covering two complete pole pitches (360°e) at z = z0 = 0 and

z = =t=z2 = +1.92 cm are given in Figures (9.4.1) and (9.4.2), respectively. It can

easily be seen that the three radial flux density waveforms are not congruent. That

is, the waveform profiles and magnitudes are dependent on the z-axis locations of the

cross-sections. This can be further demonstrated through an isometric presentation

of the radial flux density component, B_, distribution in the main airgap, under one

pole pitch, see Figure (9.4.3). Meanwhile, as expected for a generator in an over-

excited mode (generating Vars) the highest flux density peaks occur on the trailing

side of a pole pitch. Further, these peaks vary with the axial location, thus further

highlighting the 3D nature of the magnetic field in such machines.

In spite of the uniform nature of the geometry of the auxiliary airgaps at both

ends of the machine, the radial flux density distributions are dependent on the axial-z

locations of the cross-sections, as well as the circumferential-0 locations within these
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cross-sections. For example, the radial flux distributions at z = z3 =5.13 cm and at

z = z4 =7.72 cm within the auxiliary airgaps are given in Figure (9.4.4), for the same

rotor position of the flux density distributions in Figures (9.4.1) through (9.4.3). The

radial flux density at z = 5.13 cm is not uniform here despite the uniformity of the

geometry of the auxiliary airgap (constant airgap length). It can be said that the

flux density distribution here has also been modulated by the peculiar nature of the

rotor magnetic circuit geometry. This is a further confirmation of the 3D nature of

the magnetic field within such MLAs. The positive values of the radial flux densities

in one of the auxiliary airgaps, Figure (9.4.4), indicate a radially outward flux flow

across the auxiliary airgap from the shaft into the end bells and outer casing. A

similar situation with opposite sign can be observed for z = -z3 = -5.13 cm and

z = -z4 = -7.72 cm in the other auxiliary airgap, see Figure (9.4.5), which indicates

radially inward oriented flux flow.

The various MLA winding inductances, specifically all the terms in the state

model, Equations (9.1.4) through (9.1.21), have been computed using the 3D-FE al-

gorithms as described above. Samples of these inductance profiles versus the rotor

position angle over a complete cycle of 360°e, calculated every 10°e change in rotor

position, are given in Figures (9.4.6) through (9.4.9), for Laa, Lab, Lay, and L f f, re-

spective]3'. These inductance profiles were computed under rated load conditions.

Also given in the same figures are the no-load rated voltage profiles of these induc-

tances. The harmonic contents of the inductances under no-load and rated load are

compared in the accompanying tables in each of these figures. As anticipated, the

inductances are lower in value under load in comparison with their corresponding no-

load values, due to the higher degrees of saturation throughout the magnetic circuit

of the MLA.

The MLA is shown in Figure (9.4.10) during testing. Figure (9.4.11) shows some

typical computer simulation results. These results are the line to neutral terminal

voltage of phase (a), vo, the phase current, i,, the field winding current, il, and

the electromagnetic torque, T_,, using the Method #1 of Equation (9.3.13). As can

be seen in Figure (9.4.11), the required field excitation current for this rated load

operation is 3.019 A (2180 Ampere-Turns total).

The line to neutral terminal voltage waveform of phase (a), va, as well as its har-

monic breakdown is given in Figure (9.4.12). Figure (9.4.13-a,b) shows the comparison

of the computed terminal voltage waveform and the corresponding test oscillogram
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Figure (9.4.10)The 14.3kVA MLA Under Load Test
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[3] under the sameload conditions. The very strongsimilarity that existsbetweenthe
two voltage profiles, coupledwith the computedand test peak voltagesof 175Volts
and 171Volts in Figures (9.4.13-a)and (9.4.13-b), respectively,confirm the validity
of the 3D magnetostaticfield and resulting MLA performancecomputationsobtained
under rated load conditions.

The correspondingcomputedprofiles and harmonicsbreakdownsof the steady-
state current of phase (a), i_, and steady-state field current profile, i], are given

in Figures (9.4.14) and (9.4.15), at rated load conditions (over-excited 0.75 lagging

power factor) for the 14.3 kVA MLA, respectively. Test oscillograms are not avail-

able at this time. Meanwhile, the electromagnetic torque profile, is given in Figure

(9.4.16), together with a breakdown of the harmonic components of the torque in the

accompanying table. These harmonics could not have been calculated without use

of the abc frame of reference coupled to the global 3D magnetic field computation

method at hand. As expected the torque is of negative magnitude for this generation

mode. which is due to the adoption of the consumer (load) notation throughout this

investigation. Notice the substantial magnitude of the 18th harmonic (more than 4c?_

of the average torque) in the torque profile, which can directly be attributed to the

number of slots per pair of poles in the example 4-pole 14.3 kVA machine, whose

number of stator slots is 36.

9.4.2 The 21.5 kVA, 0.75 Lagging Power Factor Load Case

The same algorithm and procedure were used to compute the 3D magnetostatic field

distribution throughout the magnetic circuit of the example MLA, and its corre-

sponding machine winding inductances, at an over-rated load of 21.5 kVA, 0.75 lag-

ging power factor (over excited generator mode generating both Watts and Vars) and

rated voltage conditions.

The radial flux density distributions (waveforms) in the main airgap of this

MLA, at the same rotor position associated with Figures (9.4.1) through (9.4.3),

were obtained at various axial z locations, namely at z = 0, and z = 4-z_, see Figure

(7.3.4). The flux density waveforms are given in Figures (9.4.17) and (9.4.18) for

z = 0, and z = -t-1.92 cm, respectively. An isometric presentation of the radial

component of the flux density, Br, distribution under one pole pitch (showing only

the positive portion of Br) is given in Figure (9.4.19). Again, examination of these
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flux density waveforms reveals their dependency on the axial-z location. Hence there

is a lack of axial symmetry confirming the three dimensional nature of the magnetic

field distribution in this MLA.

The computed machine inductances at this over-rated load, together with the in-

ductances under no-load and rated load, are given in Figures (9.4.20) through (9.4.23).

As expected, there is a further decrease in inductance values when the MLA is working

under over-loaded condition.

Figure (9.4.24) shows some typical computer simulation results, from which

one can see that a field excitation current of 4.426 A (3195 Ampere-Turns total),

is required for this over-rated operation. The steady-state line to neutral voltage

waveform, v_, and current waveform, i_, for phase (a) are given for this overload

condition in Figures (9.4.25) and (9.4.26), respectively. Notice the ripple-prone

nature of the line to neutral voltage waveforms, and the near absence of such ripples

in the current. The corresponding field current, if, profile is given in Figure (9.4.27),

which again is not ripple free. No test data are available for this load condition at

this time.

For this over-rated load condition the steady-state torque profile was also com-

puted from the results of the 3D magnetic field and accompanying state model al-

gorithms and is given in Figure (9.4.28), which shows a substantial ripple content.

This is in addition to a table containing the harmonic breakdown of the torque given

in the same figure, which again reveals substantial 6th and 1Sth harmonic compo-

nents. Again, the lSth harmonic component is related directly to the number of

stator slotting (18 slots per pah' of poles).

9.5 Effects of Load on Flux Distributions and

Other MLA Parameters

The computed main flux flow pattern is shown in Figures (9.5.1) and (9.5.2) by

means of B vector arrows along a direct axis plane of the 14.3 kVA MLA, for the 14.3

kVA, 0.75 lagging P.F., rated voltage case, in the cores and in the end-turn region,

respectively. For the same rated load case, the B field plot in the mid armature

cross-sectional plane is given in Figure (9.5.3). These figures again show the truly 3D
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6 0.1395 2.8195

12 0.0368 2.2098

18 0.1163 -0.8069

Figure (9.4.28) Computed Waveform of Electromagnetic Torque at Over-Rated Load
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nature of the magnetic field distribution in the MLA class of machines.

The resultant flux densities at typical magnetic circuit locations in the rotor,

(1) through (6), see Figure (9.5.4) for these locations, are given in the table included

within this figure for the rated voltage no-load, 14.3 kVA and 21.5 kVA load condi-

tions, respectively. Notice the significant increase in the magnitudes of flux densities

at all six locations, and in particular at locations(2), (4) and (5) designated in the

longitudinal rotor cross-section in Figure (9.5.4), where flux densities higher than 1.4

Tesla were computed.

Furthermore, the resultant flux densities at typical stator core locations, (1)

through (4), shown in the stator laminations' FE cross-sectional grid of Figure (9.5.5),

are given in the table attached to the same figure for the three above mentioned op-

erating conditions, respectively. As expected, the higher level of magnetic saturation

occurs at the stator tooth tips, location (1), at which the flux density reaches magni-

tudes near 2 Teslas under both load conditions studied here.

Effects of load on the synchronous reactances, xd and %, is given in Table (9.5.1),

with comparison to the no-load reactance values. This is given only for insight into

the global effects of load magnetic saturation levels, and should not be construed as

an endorsement of d-q modeling for such MLAs.

Again, the combined M\"P-MSP 3D-FE magnetic field computation in conjunc-

tion with the abc-frame state-model of the load conditions in the MLA, allows one

to determine the magnetic field distributions and profiles as well as the stead5' state

waveforms of the armature and field currents and voltages, at any desired load con-

ditions. These field distributions and voltage as well as current profiles cannot be

computed using conventional design methods and formulas because of the very com-

plex 3D nature of the magnetic field and magnetic circuit configurations in this class

of alternators (MLAs). This method allows the incorporation of the full impact of

magnetic nonlinerities and space harmonics caused by the magnetic and geometric

complexities into the computation of the terminal voltage waveforms, current wave-

forms, and most importantly electromagnetic torque profiles associated with these

machines under load. Knowledge of the harmonics in the torque profiles is of impor-

tance for vibration studies associated with aerospace applications.
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l Typical MLA rotor flux density values (Teslas)

Location No-Load

(6)

14.3 kVA 21.5 kVA

(1) 1.02 1.28

(2) 0.96 1.29

(3) 0.s8 0.8s
(4) 1.04 1.37

(5) 1.26
1.20

1.33

1.40

0.99

1.43

1.42

1.27

Figure (9.5.4) Effects of Load on Typical Flux Densities in the Rotor

Magnetic Portion of the 14.3 kVA MLA
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Typical MLA stator flux density values (Teslas)

Location No-Load 14.3 kVA 21.5 kVA

(1) 1.21 1.89 1.96

(2) 1.06 1.58 1.58
(3) 0.86 0.98 0.91
(4) 1.08 1.24 1.23

Figure (9.5.5) Effects of Load on Typical Flux Densities in Stator Core of

the 14.3 kVA MLA
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Table (9.5.1) Effectsof Load on d - q Inductances

Reactance No-Load 14.3 kVA 21.5 kVA

xd (Ohms) 4.33 3.88 3.72

xq (Ohms) 4.25 3.47 3.31
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Chapter 10

Conclusions and Recommendations

for Future Work

A novel method of combined use of MVP based FE formulations and MSP based

FE formulations for computation of 3D magnetostatic fields was developed in this

dissertation. This method provides a powerful tool for 3D magnetostatic field com-

putation, which makes it practical, using state of the art super-computer resources,

to globally compute and analyze the magnetic fields in rotating electric machines.

The advantages of this method over the other existing methods [32, 33, 34, 38, 37]

which are exclusively based on MVP formulations or MSP formulations, can be listed

as follows:

(1) The combined MVP-MSP solution method leads to considerable reduc-

tion by nearly a factor of 3 in the number of unknowns in comparison

to the number of unknowns which must be computed in global MVP

solutions. Accordingly, this method achieves substantial cpu time sav-

ings in the solution of large scale problems in comparison to MVP based

methods.

(2) The method employs second-order finite element curl-curl MVP formula-

tion to compute the curl component of the magnetic field intensity in the

current carrying region. Hence, it eliminates the difficulty of FE grid ill-

conditioning associated with the MVP based first-order FE formulations

as explored and detailed in Chapter 2.

(3) The method allows one to incorporate portions of iron cores sandwiched

in between coils (conductors), which is a unique feature of this method

among the MSP based class of methods. Thus, it greatly simplifies the
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geometries of current carrying regions in electric machinery applications.

(4) The method leads to global MSP solutions which are single valued in

nature, that is, no branch cut is needed. This is again a unique feature in

this approach among the MSP based class of magnetic field computation

methods.

(5) The method eliminates the need for having to perform the difficult tasks

associated with integral type (Biot-Savart) and other formulations which

must be used in exclusively MSP based solution algorithms. Accordingly,

this method leads to a substantial advantage in handling very complex

conductor geometries associated with rotating electric machinery.

(6) A simple surface finite element technique used in the calculation of the

magnetic scalar potential jumps, which is necessary for linking the MVP

and MSP based portions of the solution algorithm, was achieved and

implemented.

In addition, a Newton-Raphson procedure with a novel concept of an adaptive relax-

ation factor was developed and successfully used in solving the 3D-FE MSP problem

with magnetic material anisotropy and nonlinearity. Accordingly, the method is most

suited for solution of large scale global type magnetostatic field computations in rotat-

ing electric machinery with very complex geometries and magnetic circuit topologies.

as well as nonlinear and anisotropic material properties.

The combined MVP-MSP 3D-FE method, in conjunction with the state space

equations using the natural abc-frame of reference, forms a complete computer aided

model to analyze and predict machine parameters and performances. This modeling

tool was applied to 3D magnetic field analysis and machine performance computations

of an example 14.3 kVA MLA. The energy perturbation approach [18, 79] was success-

fully used in this investigation to compute machine winding inductances from 3D-FE

computed magnetic field results. The effects of magnetic material nonlinearity and

the space harmonics due to complex magnetic circuit geometries were fully included

in the results of machine winding inductances. Results of computed open-circuit,

short-circuit, as well as rated load and over-rated load conditions were found to be

in excellent agreement with corresponding test values. The computed waveforms of

armature phase line to neutral voltages compared favorably to the test oscillograms.

Meanwhile, the electromagnetic torque profiles including their ripples (harmonics)

were computed in terms of terminal voltage and current profiles as well as stored
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magnetic energies. Knowledge of the harmonics in the torque profile is important for

vibration studies associated with aerospace applications. Also, results of study of load

effects on the flux densities in typical locations in rotor and stator lamination cores

were carried out. This modeling technique and algorithm can serve as an excellent

design tool and means of gaining insight into the workings of such MLAs with very

complex 3D magnetic field patterns and complex magnetic circuit geometries. The

generic nature of this modeling allows one to use it in design optimization and design

synthesis studies.

In addition, results of use of this modeling and computation method in a design

alteration, in which the stator stack length of the example alternator is stretched in

order to increase voltage and volt-ampere rating, were studied in this investigation.

These results demonstrate the inadequacy of conventional 2D-based design concepts

and the imperative of this type of 3D magnetic field modeling in analysis of such MLA

class of machines. This includes almost all machines of the axial flux flow variety.

As a recommendation for the future work, this author suggests that further

effort should be made to expand the capability of this computer aided model to

computation of electromagnetic forces on windings and computation of ferromagnetic

core losses. This expansion should also include the capability of computing machine

transient and damping parameters, which would enable one to analyze rectifier-type

load effects on such MLAs.

Meanwhile, this author believes that studies and developments of methods of

3D magnetic field computations should be carried on further. Because of the volume

current distributions, complex geometries, and magnetic material nonlinearities in

electric machine problems, the global MVP formulation seems to be the most conve-

nient method to use in such applications. In seeking global MVP methods suitable

for such complex and large scale problems, the 3D-FE MVP edge element formula-

tion [47] should be further investigated. Also, with the fast advances of the modern

computer capabilities, the second-order 3D-FE MVP formulation, if it can effectively

handle magnetic material nonlinearity, can be a convenient and powerful tool in solv-

ing large scale electromagnetic fields in rotating electric machines.
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Appendix A

A.1 Element Equation of the Unconstrained

Curl-Curl MVP 3D-FE Formulation

The element equation of the unconstrained curl-curl MVP 3D-FE formulation using

first-order tetrahedral elements was given in details by Demerdash et al in references

[32, 33, 34]. This element equation can be rewritten here in a compact form as follows:

A2

L

(A.1.1)

The coefficient matrix of (A.I.1) is a 12 x 12 square matrix. Each of the terms, _i,k,

i,j = 1,2,3,4, in the coefficient matrix is a (3x3) sub-matrix which can be written

as

Si,k = Vol

l/z 0i3 Ok3

"3kl./yO'i40_k4

Uz 0_i2 (2 k3

--VyO_i2Clk 4

l/z 0i3 Ok2

--I/xOi3Ok4

-- UyOq4Ok2

-- VxOq 4 Ot k3

(A.1.9)
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where, u_, u_, and u, are the elemental reluctivities, Vol is the volume of the tetrahe-

dral element. In Equation (A.1.2), oil, i,/,- = 1,2, 3, 4, are the coefficients related to

the geometry of the element, which are detailed in Appendix B of this dissertation.

The term, Ai, for i = 1,2,3,4 in Equation (A.I.1), is a (3xl) sub-column-vector

given by

A,x!
A_ =. A_ i

Ai, I
1

(A.l.3)

D

where, ,4i_, A w, and A,,. are the directional components of the nodal MVP, Ai, at

the i-th node of the tetrahedral element.

The term, Ii, for i = 1,2,3,4, in the element forcing function of Equation

(A.I.1). is a (3xl) sub-column-vector which can be written as follows:

a Vo 4]
11)I (A.1.4)

j= l_bl
4

where, J_, Jr, and J, are the directional components of the known elemental current

density vector.
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A.2 Element Equation of the Constrained

Curl-Curl MVP 3D-FE Formulation

According to reference [38], the element equation of the constrained curl-curl MVP

3D-FE formulation can be written as follows:

_,_ ¢.$_.,,+_.+ _.+.S,,,,,

(A.2.1)

The coefficient matrix of (A.2.1) is a 12 x 12 square matrix. Each of the terms, _,++,

i,j = 1, 2,3,4, in the coefficient matrix is a (3x3) sub-matrix which can be written

as

_i,k = tbl

PzOti3C_k3

"_ PyC_ i4 C_k4

+Aai_ak2

l/xOi4Qk4

-t-tJzOi2Qk2

-f" _ai3aj+3

PyO+2Ok2

"_ IJxO:i3Ok3

"J-AOq4ak 4

(A.2.2)

where, u:_, uu, and uz are the elemental reluctivities, Vol is the volume of the t etrahe-

dral element. In Equation (A.2.2), aik, i,k = 1,2,3,4, are the coefficients related to

the geometry of the element, which are detailed in Appendix B of this dissertation. In

Equation (A.2.2), A is a parameter which sights to set the Coulomb Gauge condition.

V • A = 0, in the MVP solution. As recommanded in reference [38], this parameter

can be chosen to be equal to the reluctivity, u.
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The term, Ai, for i = 1,2, 3, 4, in Equation (A.2.1), is a (3x 1) sub-column-vector

given by

/Aix /

fl_.i = A,y
(A.2.3)

m

where, A,_, Aiu, and A/z, are the directional components of the nodal MVP, Ai, at

the i-th node of the tetrahedral element.

The term, /i, for i = 1,2,3,4, in the element forcing function of Equation

(A.2.1), is a (3xl) sub-colunm-vector which can be written as follows:

d x-'-7-

_ J Ibl
I, =

Ib/

Jz--U

(A.2.4)

where, d_, Jy, and Jz are the directional components of the known elemental current

density vector.
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A.3 Element Equation of the Poisson Equation

Based MVP 3D-FE Formulation

The element equation of the Poisson equation based MVP 3D-FE formulation was

given in reference [37]. This element equation can be rewritten here as follows:

A2 I2

L

(A.3,1)

The coefficient matrix of (A.3.1) is a 12 x 12 square matrix. Each of the terms, Si.k,

i,k = 1,2,3,4, in the coefficient matrix is a (3x3) diagonal type sub-matrix which

can be written as

_i,k = u Vol (A.3.2)

where, u is the elemental reluctivity, Vol is the volume of the tetrahedral element. In

Equation (A.3.2), oqk, i, k -- 1,2, 3,4, are the coefficients related to the geometry of

the element, which are detailed in Appendix B of this dissertation.

322



The term, A___,for i = 1,2, 3, 4, in Equation (A.3.1), is a (3x 1 ) sub-column-vector

given by

Aiy

(A.3.3)

Aiz

where, A,x. Air, and Aiz, are the directional components of the nodal MVP, Ai, at

the i-th node of the tetrahedra] element.

The term, -/i, for i = 1,2,3,4, in the element forcing function of Equation

(A.3.1), is a (3xl) sub-column-vector which can be written as follows:

]i _--"

da----7

Ib/ (A.3.4)
Ju--_-

Vol

where, Jx, Jy, and Jz are the directional components of the known elemental current

density vector.
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Appendix B

In the work of 3D-FE formulation, one frequently deals with the element shape func-

tions and their derivative terms:

0As
Ni, Ou for u = x,y,z (B.0.1)

as well as the following type of integrations:

f ON,: -_-u dr, foru = x,y, z (B.0.2)

where N, is the shape function or interpolate coefficient of the finite element: t; is the

elemental volume. In the case of first order tetrahedral element, these shape functions

are piecewise linear polynomials. According to the derivation work in references

[32, 33, 34], such shape functions can be expressed using a-coefficients as follows:

/

Na = all + cq2x + o_3y + c_14z I

N2 = a21 + a22x + a_3y + c_24z

.N3 -= a31 + a32X -+- 0_33Y "t- 0_342

(B.0.3)

N4 ---- a41 + a42X + c_43Y -t- a44z
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Also shownin references [32, 33, 34], these o-coefficients can be obtained in terms of

elemental nodal coordinates using the following equation:

-1

Oll 021 0'31 041

012 022 032 042

0_13 023 0_33 (1'43

014 O24 034 044

1 xl Yl zl

1

1

1

x2 Y2 z2

X3 Y3 Z3

x4 Y4 z4

(B.0.4)

where, xi, yi, and zi, i = 1,2,3,4, are the elemental nodal coordinates for the i-th

node, i = 1,2, 3, 4, respectively. The explicit form of each o-coefficient was also given

in references [32, 33, 34, 80].

Accordingly, based on (B.0.3) the partial derivatives of the shape functions with

respect to x, y, and z, can be written as follows:

O5, /

0-7- = oi2

0A'_

0---'_ = ai3

0,\'i

02 -- _i4

for i = 1,2,3,4 (B.0.5)

Notice that the (_-coefficients are constants within a given tetrahedral element. Thus.

the integration terms in Equation (B.0.2) can be expressed in terms of the a-coefFicients

as follows:

/v_ _dv = (°i3) V°l

ioN, ]
"t --'_z dv -" (oei4) Vol

for i = 1,2,3,4 (B.0.6)

where Ibl is the volume of the element. The o-coefficients are used in the computer

program routines for various 3D-FE computations in this research.
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